|  e-ISSN: 2757-6620

Original article | Journal of Agricultural Production 2022, Vol. 3(2) 78-87

Estimates of Combining Ability and Association among Morpho-Agronomic Traits of Single Cross Maize (Zea mays L.) Hybrids

Woldu Mogesse, Habtamu Zeleke

pp. 78 - 87   |  DOI: https://doi.org/10.56430/japro.1178621   |  Manu. Number: j agri pro.2022.006

Published online: December 31, 2022  |   Number of Views: 1  |  Number of Download: 265


Abstract

Screening genotypes have a crucial role to increase the efficiency of selections in plant breeding program. Therefore, this study was emphasized to determine combining ability and the association between traits among themselves and yield. The experiment was conducted at Haramaya University Research Station (Raare) for two years (2018 and 2019) using 4x7 alpha-lattice design with three replications. Pooled analysis of variance revealed highly significant (p≤0.01) variations among crosses for grain yield and related traits. According to the result of combining ability analysis, parental line L3 was identified as a good general combiner for grain yield, ear diameter, 1000-kernel weight, and days to maturity. Similarly; L1, L2, and L8 proved as the best general combiner for number of kernels per row. Crosses L1×L6, L3×L5, L4×L6, L4×L8, and L5×L7 were found good specific combiners for 1000-kernel weight. Furthermore, the cross L5×L6 was the best specific combiner for ear diameter, whereas L4×L7 for both number of kernels per row and 1000-kernel weight. Likewise, the crosses L1×L5, L3×L8, L6×L7, and L7×L8 were identified as the best specific combiner towards earliness. Moreover, thousand kernel weight showed significant positive correlation with grain yield, conversely, days to anthesis, days to silking, ear aspect, and Puccinia sorghi exhibited significant negative correlation with grain yield at genotypic and phenotypic levels. Ear length, 1000-kernel weight, number of kernel rows per ear, and Turcicum leaf blight had positive direct effect on grain yield at genotypic and phenotypic level. In general, the result presented in the study might be useful for further breeding process to improve the productivity of maize.

Keywords: Combining ability, Correlation, Genotypic, Grain yield, Path coefficient, Phenotypic


How to Cite this Article?

APA 6th edition
Mogesse, W. & Zeleke, H. (2022). Estimates of Combining Ability and Association among Morpho-Agronomic Traits of Single Cross Maize (Zea mays L.) Hybrids . Journal of Agricultural Production, 3(2), 78-87. doi: 10.56430/japro.1178621

Harvard
Mogesse, W. and Zeleke, H. (2022). Estimates of Combining Ability and Association among Morpho-Agronomic Traits of Single Cross Maize (Zea mays L.) Hybrids . Journal of Agricultural Production, 3(2), pp. 78-87.

Chicago 16th edition
Mogesse, Woldu and Habtamu Zeleke (2022). "Estimates of Combining Ability and Association among Morpho-Agronomic Traits of Single Cross Maize (Zea mays L.) Hybrids ". Journal of Agricultural Production 3 (2):78-87. doi:10.56430/japro.1178621.

References

    Abdel-Moneam, M. A., Attia, A. N., EL-Emery, M. I., & Fayed, E. A. (2009). Combining ability and heterosis for some agronomic traits in crosses of maize. Pakistan Journal of Biological Sciences, 12(5), 433-438. https://doi.org/10.3923/pjbs.2009.433.438

    Abenezer, A., Legesse, W., & Wosene, G. (2020). Standard heterosis and trait association of maize inbred lines using line x tester mating design in Ethiopia. African Journal of Plant Science, 14(4), 192-204. https://doi.org/10.5897/AJPS2019.1839

    Alake, C. O., Ojo, D. K., Oduwaye, O. A., & Addekoya, M. A. (2008). Genetic variability and correlation studies in yield and yield related characters of tropical maize (Zea mays L.). ASSET: An International Journal of Agricultural Sciences, Science, Environment and Technology (Series A), 8(1),14-27.

    Amiruzzaman, M., Islam, M. A., Hasan, L., Kadir, M., & Rohman, M. M. (2013). Heterosis and combining ability in a diallel among elite inbred lines of maize (Zea mays L.). Emirates Journal of Food and Agriculture, 25(2), 132-137. http://doi.org/10.9755/ejfa.v25i2.6084

    Bello, O. B., & Olawuyi, O. J. (2015). Gene action, heterosis, correlation and regression estimates in developing hybrid cultivars in maize. Tropical Agriculture (Trinidad), 92(2), 102-117.

    Chaudhary, W. B., Ali, M. A., Bajwa, K. S., Iqbal, A., Khan, M. A., Shahid, A. A., & Aslam, M. (2017). Correlation analysis of maize genotypes under saline stress and its impact on morphological characteristics. Life Science Journal, 14(7), 93-101. https://doi.org/10.7537/marslsj140717.15

    Crosbie, T. M., & Mock, J. J. (1981). Changes in physiological traits associated with grain yield improvement in three maize breeding programs. Crop Science, 21(2), 255-259. https://doi.org/10.2135/cropsci1981.0011183X002100020013x

    Eleweanya, N. P., Uguru, M. I., Eneobong, E. E., & Okocha, P. I. (2005). Correlation and path coefficient analysist of grain yield related characters in maize (Zea mays L.) under unmude conditions of south eastern Nigeria. Agro-Science, 4(1), 24-28. https://doi.org/10.4314/as.v4i1.1517

    Elmyhum, M. (2013). Estimation of combining ability and heterosis of quality protein maize inbred lines. African Journal of Agricultural Research, 8(48), 6309-6317. https://doi.org/10.5897/AJAR2013.7119

    FAO. (2021). FAO stat. https://www.fao.org/faostat

    Fasahat, P., Rajabi, A., Rad, J. M., & Derera, J. (2016). Principles and utilization of combining ability in plant breeding. Biometrics & Biostatistics International Journal, 4(1), 1-24. https://doi.org/10.15406/bbij.2016.04.00085

    Gemechu, N., Leta, T., Sentayehu, A., & Dagne, W. (2018). Combining ability of selected maize (Zea mays L.) inbred lines for major diseases, grain yield and selected agronomic traits evaluated at Melko, South West Oromia region, Ethiopia. African Journal of Agricultural Research, 13(38), 1998-2005. https://doi.org/10.5897/ajar2018.13285

    Genet, Y., Tongoona, P., & Ifie, B. (2017). General and specific combining ability studies of selected tropical white maize inbred lines for yield and yield related traits. International Journal of Agricultural Science and Research, 7(2), 381-396.

    Gissa, D. W., Zelleke, H., Labuschagne, M. T., Hussien, T., & Singh, H. (2007). Heterosis and combining ability for grain yield and its components in selected maize inbred lines. South African Journal of Plant and Soil, 24(3), 133-137. https://doi.org/10.1080/02571862.2007.10634795

    Gomez, A. K., & Gomez, A. A. (1984). Statistical procedure for agricultural research. John Wiley and Sons.

    Gouda, R. K., Kage, U., Lohithaswa, H. C., Shekara, B. G., & Shobha, D. (2013). Combining ability studies in maize (Zea mays L.). Molecular Plant Breeding, 3(14), 116-127. https://doi.org/10.5376/mpb.2013.04.0014

    Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Science, 9(4), 463-493. https://doi.org/10.1071/BI9560463

    Haffangel, H. P. (1961). Agriculture in Ethiopia. Food and Agriculture Organization of the United Nations.

    Hassan, A. A., Jama, A. A., Hassan Mohamed, O., & Kumar Biswas, B. (2019). Study on combining ability and heterosis in maize (Zea mays l.) using partial diallel analysis. International Journal of Plant Breeding and Crop Science, 6(2), 520-526.

    Hosana, G. C., Alamerew, S., Tadesse, B., & Menamo, T. (2015). Test cross performance and combining ability of maize (Zea mays L.) inbred lines at bako, western Ethiopia. Global Journal of Science Frontier Research, 15(4), 1-23.

    Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Genotypic and phenotypic correlations in soybeans and their implications in selection. Agronomy Journal, 47(10), 477-483. https://doi.org/10.2134/agronj1955.00021962004700100008x

    Mallikarjuna, N., Chandrashekhar, H., Shashibhaskar, M., & Prahalada, G. (2011). Genetic variability and correlation studies for yield and related characters in single cross hybrids of maize (Zea mays L.). Current Biotica, 5(2), 157-163.

    Mhoswa, L., Derera, J., Qwabe, F. N. P., & Musimwa, T. R. (2016). Diversity and path coefficient analysis of Southern African maize hybrids. Chilean Journal of Agricultural Research, 76(2), 143-151. https://doi.org/10.4067/S0718-58392016000200002

    Milligan, S. B., Gravois, K. A., Bischoff, K. P., & Martin, F. A. (1990). Crop effects on broad-sense heritabilities and genetic variances of sugarcane yield components. Crop Science, 30(2), 344. https://doi.org/10.2135/cropsci1990.0011183X003000020020x

    Mogesse, W., Zelleke, H., & Nigussie, M. (2020). General and specific combing ability of maize (Zea mays L.) inbred line for grain yield and yield related traits using 8×8 diallel crosses. American Journal of BioScience, 8(3), 45-56. https://doi.org/10.11648/j.ajbio.20200803.11

    Mogesse, W. (2021). Correlation and path coefficient analysis for grain yield and yield related trait of maize (Zea mays L.) inbreed lines. International Journal of Current Research and Academic Review, 9(2), 138-150. https://doi.org/10.20546/ijcrar.2021.902.010

    Murtadha, M. A., Ariyo, O. J., & Alghamdi, S. S. (2018). Analysis of combining ability over environments in diallel crosses of maize (Zea mays). Journal of the Saudi Society of Agricultural Sciences, 17(1), 69-78. https://doi.org/10.1016/j.jssas.2016.01.004

    Nabila, N., Wahyu, Y., & Widodo, W. D. (2017). Correlation and path analysis of baby corn characters in field corn and sweet corn types. PERIPI-2017 International Seminar. Bogor.

    Pandey, Y., Vyas, R. P., Kumar, J., Singh, L., Singh, H. C., Yadav, P. C., & Vishwanath. (2017). Heritability, correlation and path coefficient analysis for determining interrelationships among grain yield and related characters in maize (Zea mays L.). International Journal of Pure & Applied Bioscience, 5(2), 595-603. http://dx.doi.org/10.18782/2320-7051.2921

    Rafiq, C. M., Rafique, M., Hussain, A., & Altaf, M. (2010). Studies on heritability, correlation and path analysis in maize (Zea mays L.). Journal of Agricultural Research, 48(1), 35-38.

    Reddy, V. R., & Jabeen, F. (2016). Narrow sense heritability, correlation and path analysis in maize (Zea mays L.). SABRAO Journal of Breeding and Genetics, 48(2), 120-126.

    SAS. (2002). Statistical Analysis of system software, Version 9.0. USA.

    Singh, R. K., & Chaundry, B. D. (1985). Biometrical methods in quantitative genetic analysis. Kalayani Publishers.

    Sugiharto, A. N., Nugraha, A. A., Waluyo, A., & Ardiarini, N. R. (2018). Assessment of combining ability and performance in corn for grain yield and yield components. Journal by Innovative Scientific Information & Services Network, 15(2), 1225-1236.

    Tessema, T., Alamerew, S., Wegary, D., & Menamo, T. (2014). Test cross mean performance and combining ability study of elite lowland maize (Zea mays L.) inbred lines at Melkassa, Ethiopia. Advanced Crop Science Technology, 15(4), 1-24.

    Wedwessen, T., & Wolde, L. (2020). correlation and path analysis studies among yield and yield related traits of maize (Zea mays L.) inbred lines in moisture stress area, Melkassa, Ethiopia. International Journal of Novel Research in Life Sciences, 7(2), 1-9.

    Wende, A. (2013). Heterosis and combining ability of elite maize inbred lines for grain yield potential and reaction to northern corn leaf blight in the mid-altitude sub-humid agro ecologies (Doctoral dissertation, Kwa Zulu- Natal University).

    Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557-585.

    Zeeshan, M., Ahsan, M., Arshad, W., Ali, S., Hussain, M., & Khan, M. I. (2013). Estimate of correlated responses for some polygenic parameters in yellow maize (Zea mays L.) hybrids. International Journal of Advanced Research, 1(5), 24-29.