|  e-ISSN: 2757-6620

Original article | Journal of Agricultural Production 2022, Vol. 3(2) 42-47

Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods

Kerim Emre Öksüz, Hülya Şereflişan

pp. 42 - 47   |  DOI: https://doi.org/10.56430/japro.1128026   |  Manu. Number: j agri pro.2022.002

Published online: December 31, 2022  |   Number of Views: 4  |  Number of Download: 249


In this study, Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses are used for the microstructure characterisation of Eobania vermiculata samples collected from Iskenderun region. The shells of land snails are discarded as waste; however, they are qualified materials with multiple use areas. To substantiate this proposition, an attempt was made to elucidate the physical and chemical properties of the shells of chocolate band snail, E. vermiculata. SEM observations indicated that nacre crystals are always laminated aragonite, usually presenting sharp edges. Nacre crystallites which pile up into columns vertically abreast aligned observed. The crystals are about 390-155 nm thick, and they form stacks along a fixed spacing, filled with biological matter. The XRD and FTIR observations revealed the dominance of the aragonite form of the calcium carbonate crystal in the microstructures of each snail shell with the occurrence of different shell surface functional groups. Thus, further exploration of the shell inclusive of the organic components is required to promote its possible use as a biocomposite. Nonetheless, the present study provides an overview of physical and chemical characteristics of the land snail shells and inlight their potential use in different areas in the perspective of sustainability.

Keywords: Characterization, Chocolate band snail, Land snail, Microstructure, SEM

How to Cite this Article?

APA 6th edition
Oksuz, K.E. & Sereflisan, H. (2022). Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods . Journal of Agricultural Production, 3(2), 42-47. doi: 10.56430/japro.1128026

Oksuz, K. and Sereflisan, H. (2022). Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods . Journal of Agricultural Production, 3(2), pp. 42-47.

Chicago 16th edition
Oksuz, Kerim Emre and Hulya Sereflisan (2022). "Microstructure of Eobania vermiculata (Müller, 1774): SEM, F-TIR and XRD Methods ". Journal of Agricultural Production 3 (2):42-47. doi:10.56430/japro.1128026.


    Addadi, L., Joester, D., Nudelman, F., & Weiner, S. (2006). Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry - A European Journal, 12(4), 980-987. https://doi.org/10.1002/chem.200500980

    Agbaje, O. B. A., Wirth, R., Morales, L. F. G., Shirai, K., Kosnik, M., Watanabe, T., & Jacob, D. E. (2017). Architecture of crossed-lamellar bivalve shells: The southern giant clam (Tridacna derasa, Röding, 1798). Royal Society Open Science, 4(9), 170622. https://doi.org/10.1098/rsos.170622

    Anjaneyulu, U., Pattanayak, D. K., & Vijayalakshmi, U. (2015). Snail shell derived natural hydroxyapatite: Effects on NIH-3T3 cells for orthopedic applications. Materials and Manufacturing Processes, 31(2), 206-216. https://doi.org/10.1080/10426914.2015.1070415

    Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4), 1876-1885. https://doi.org/10.1002/app.20647

    Checa, A. (2000). A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue and Cell, 32(5), 405-416. https://doi.org/10.1054/tice.2000.0129

    Currey, J. D. (1988). Shell form and strength. In E. R. Trueman & M. R. Clarke (Eds.), The Mollusca: Form and function (pp. 183-210). Academic Press. https://doi.org/10.1016/B978-0-12-751411-6.50015-1

    Dauphin, Y. (1999). Infrared spectra and elemental composition in recent biogenic calcites: Relationships between the upsilon 4 band wavelength and Sr and Mg concentrations. Applied Spectroscopy, 53(2), 184-190.

    Dauphin, Y., Brunelle, A., Medjoubi, K., Somogyi, A., & Cuif, J. P. (2018). The prismatic layer of Pinna: A showcase of methodological problems and preconceived hypotheses. Minerals, 8(9), 365. https://doi.org/10.3390/min8090365

    de Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.1016/j.micron.2009.05.006

    Dedov, I. (1998). Annotated check-list of the Bulgarian terrestrial snails (Mollusca, Gastropoda). Linzer Biologische Beiträge, 30(2), 745-765.

    Feng, Q. L., Cui, F. Z., Pu, G., Wang, R .Z., & Li, H. D. (2000). Crystal orientation, toughening mechanisms and a mimic of nacre. Materials Science and Engineering: C, 11(1), 19-25. https://doi.org/10.1016/S0928-4931(00)00138-7

    Focher, B., Naggi, A., Torri, G., Cosani, A., & Terbojevich, M. (1992). Structural differences between chitin polymorphs and their precipitates from solutions-Evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydrate Polymers, 17(2), 97-102. https://doi.org/10.1016/0144-8617(92)90101-U

    Godan, D. (1979). Schadschnecken und ihre Bekämpfung. Ulmer.

    Hedegaard, C. (1997). Shell structures of the recent Vetigastropoda. Journal of Molluscan Studies, 63(3), 369-377. https://doi.org/10.1093/mollus/63.3.369

    Hossain, A., Bhattacharyya, S. R., & Aditya, G. (2015). Biosorption of cadmium by waste shell dust of fresh water mussel Lamellidens marginalis: Implications for metal bioremediation. ACS Sustainable Chemistry & Engineering, 3(1), 1-8. https://doi.org/10.1021/sc500635e

    Li, T., & Zeng, K. (2012). Nano-hierarchical structure and electromechanical coupling properties of clamshell. Journal of Structural Biology, 180(1), 73-83. https://doi.org/10.1016/j.jsb.2012.06.004

    Lopes-Lima, M., Rocha, A., Gonçalves, F., Andrade, J., & Machado, J. (2010). Microstructural characterization of inner shell layers in the freshwater bivalve Anodonta cygnea. Journal of Shellfish Research, 29(4), 969-973. https://doi.org/10.2983/035.029.0431

    Lowenstam, H. A., & Weiner, S. (1989). Biomineralization processes. In H. A. Lowenstam & S. Weiner (Eds.), On biomineralization (pp. 26-49). Oxford University Press. https://doi.org/10.1093/oso/9780195049770.003.0005

    Machado, J., Reis, M. L., Coimbra, J., & Sá, C. (1991). Studies on chitin and calcification in the inner layers of the shell of Anodonta cygnea. Journal of Comparative Physiology B, 161(4), 413-418. https://doi.org/10.1007/BF00260802

    Marxen, J. C., Becker, W., Finke, D., Hasse, B., & Epple, M. (2003). Early mineralization in Biomphalaria glabrata: Microscopic and structural results. Journal of Molluscan Studies, 69(2), 113-121. https://doi.org/10.1093/mollus/69.2.113

    Nielsen, C. (2004). Trochophora larvae: Cell‐lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302(1), 35-68. https://doi.org/10.1002/jez.b.20001

    Örstan, A., Pearce, T. A., & Welter-Schultes, F. (2005). Land snail diversity in a threatened limestone district near Istanbul, Turkey. Animal Biodiversity and Conservation, 28(2), 181-188.

    Parveen, S., Chakraborty, A., Chanda, D. K., Pramanik, S., Barik, A., & Aditya, G. (2020). Microstructure analysis and chemical and mechanical characterization of the shells of three freshwater snails. ACS Omega, 5(40), 25757-25771. https://doi.org/10.1021/acsomega.0c03064

    Rađa, B., Rađa, T., & Šantić, M. (2012). The shell characteristics of land snail Eobania vermiculata (Müller, 1774) from Croatia. The Online Journal of Science and Technology, 2(3), 66-70.

    Ren, F., Wan, X., Ma, Z., & Su, J. (2009). Study on microstructure and thermodynamics of nacre in mussel shell. Materials Chemistry and Physics, 114(1), 367-370. https://doi.org/10.1016/j.matchemphys.2008.09.036

    Romana, L., Thomas, P., Bilas, P., Mansot, J. L., Merrifiels, M., Bercion, Y., & Aranda, D. A. (2013). Use of nanoindentation technique for a better understanding of the fracture toughness of Strombus gigas conch shell. Materials Characterization, 76, 55-68. https://doi.org/10.1016/j.matchar.2012.11.010

    Santana, P., & Aldana Aranda, D. (2021). Nacre morphology and chemical composition in Atlantic winged oyster Pteria colymbus (Röding, 1798). PeerJ, 9, e11527. https://doi.org/10.7717/peerj.11527

    Singh, A., & Purohit, K. M. (2011). Chemical synthesis, characterization and bioactivity evaluation of hydroxyapatite prepared from garden snail (Helix aspersa). Journal of Bioprocessing & Biotechniques, 1, 104. https://doi.org/10.4172/2155-9821.1000104

    Spann, N., Harper, E. M., & Aldridge, D. C. (2010). The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften, 97(8), 743-751. https://doi.org/10.1007/s00114-010-0692-9

    Suzuki, M., & Nagasawa, H. (2013). Mollusk shell structures and their formation mechanism. Canadian Journal of Zoology, 91(6), 349-366. https://doi.org/10.1139/cjz-2012-0333

    Waller, T. R. (1980). Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithsonian Institution Press. https://doi.org/10.5479/si.00810282.313

    Wang, S. N., Yan, X. H., Wang, R., Yu, D. H., & Wang, X. X. (2013). A microstructural study of individual nacre tablet of Pinctada maxima. Journal of Structural Biology, 183(3), 404-411. https://doi.org/10.1016/j.jsb.2013.07.013

    Watabe, N. (1988). Shell structure. In E. R. Trueman & M. R. Clarke (Eds.), The Mollusca: Form and function (pp. 69-104). Academic Press. https://doi.org/10.1016/B978-0-12-751411-6.50011-4

    Weir, C. E., & Lippincott, E. R. (1961). Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. Journal of Research of the National Bureau of Standards-A. Physics and Chemistry, 65(3), 173-183. https://doi.org/10.6028%2Fjres.065A.021

    Welter‐Schultes, F. W., & Williams, M. R. (1999). History, island area and habitat availability determine land snail species richness of Aegean islands. Journal of Biogeography, 26(2), 239-249.

    Zhang, G., & Li, X. (2012). Uncovering aragonite nanoparticle self-assembly in nacre-A natural armor. Crystal Growth & Design, 12(9), 4306-4310. https://doi.org/10.1021/cg3010344