|  e-ISSN: 2757-6620

Review article | Journal of Agricultural Production 2021, Vol. 2(2) 72-85

Flavor in a Tea Glass to Present from Past: Safely Organic Production and Health Effects of Tea

Halit Karagöz, Fazilet Parlakova Karagöz, Erdim Erduran, Ramazan Çakmakçı

pp. 72 - 85   |  DOI: https://doi.org/10.29329/agripro.2021.360.5   |  Manu. Number: MANU-2112-02-0001.R2

Published online: December 29, 2021  |   Number of Views: 64  |  Number of Download: 529


Abstract

Tea (Camellia sinensis (L.) O. Kuntze) is the second most-consumed non-alcoholic beverage in the world after water. The health-beneficial properties of tea, known to contain more than 4000 bioactive substances, of which about one-third consist of polyphenols, are increasingly well understood. The medicinal properties of the tea plant have been proven by laboratory and clinical studies to have an anti-cancer effect, benefits for dental health, protect against Alzheimer with anti-paralytic, anti-diabetic, and antiparkinson properties, and its use against skin diseases. However, it is known that the tea plant, which requires plenty of fertilizer, can cause excessive pollution of the groundwater when chemical fertilizers are washed away with precipitation in the areas where it is grown. In order to eliminate this negative situation, studies regarding organic and microbial fertilizers that are more environmentally friendly and do not harm the soil and human health that could be substituted for chemical fertilizers as much as possible or mitigate their use and enable to grow products of adequate amount and quality should be accelerated. The aim of this review is to bring together scientific information about the characteristics and health effects of tea and organic tea cultivation.

Keywords: Camellia sinensis (L.) O. Kuntze, Chemical content, Microbial fertilizer, Organic tea


How to Cite this Article?

APA 6th edition
Karagoz, H., Karagoz, F.P., Erduran, E. & Cakmakci, R. (2021). Flavor in a Tea Glass to Present from Past: Safely Organic Production and Health Effects of Tea . Journal of Agricultural Production, 2(2), 72-85. doi: 10.29329/agripro.2021.360.5

Harvard
Karagoz, H., Karagoz, F., Erduran, E. and Cakmakci, R. (2021). Flavor in a Tea Glass to Present from Past: Safely Organic Production and Health Effects of Tea . Journal of Agricultural Production, 2(2), pp. 72-85.

Chicago 16th edition
Karagoz, Halit, Fazilet Parlakova Karagoz, Erdim Erduran and Ramazan Cakmakci (2021). "Flavor in a Tea Glass to Present from Past: Safely Organic Production and Health Effects of Tea ". Journal of Agricultural Production 2 (2):72-85. doi:10.29329/agripro.2021.360.5.

References

    Ahmed, S., Stepp, J. R., & Xue, D. (2014). Cultivating botanicals for sensory quality: From good agricultural practices (GAPs) to taste discernment by smallholder tea farmers. In: R. Kurt (Ed.), Botanicals: Methods for quality and authenticity. CRC Press, Taylor & Francis Group, LLC.

    Akiyama, H., Yan, X., & Yagi, K. (2006). Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data. Soil Science and Plant Nutrition, 52(6), 774-787. https://doi.org/10.1111/j.1747-0765.2006.00097.x

    Alikılıç, D. (2016). The importance and historical course of tea for the Black Sea. Journal of Black Sea Studies, 21, 269-280.

    Anesini, C., Ferraro, G. E., & Filip, R. (2008). Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. Journal of Agricultural and Food Chemistry, 56(19), 9225-9229. https://doi.org/10.1021/jf8022782

    Anonymous. (2013a). Ministry of National Education agricultural technologies lesson tea farming module. www.meb.gov.tr

    Anonymous. (2013b). Organic agriculture national action plan 2013. www.tarimorman.gov.tr

    Anonymous. (2015). Yeditepe Sağlık Hizmetleri A.Ş-Çay tarımı AR-GE RAPORU/2015. Retrieved Oct 11, 2019, from https://www.bactogen.com/source/Rapor/4-GIRIS.pdf

    Anonymous. (2019). FAOSTAT. Retrieved Oct 01, 2019, from http://www.fao.org/faostat/en/#data/QC

    Arab, L., Liu, W,. & Elashoff, D. (2009). Green and black tea consumption and risk of stroke – A meta-analysis. Stroke, 40(5), 1786-1792. https://doi.org/10.1161/STROKEAHA.108.538470

    Baby, U. I., Tensingh Baliah, N., Ponmurugan, P., & Premkumar R. (2001). Population dynamics of nitrogen fixing and phosphate solubilizing bacteria in tea soil. UPASI Tea Research Foundation Newsletter, 10(2), 4.

    Bagyalakshmi, B., Ponmurugan, P., & Marimuthu, S. (2012). Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). African Journal of Agricultural Research, 7(30), 4250-4259.

    Ball, B. C., Mctaggart, I. P., & Scott, A. (2004). Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use Management, 20(3), 287-295. https://doi.org/10.1111/j.1475-2743.2004.tb00371.x

    Baranski, M., Srednicka-Tober, D., Volakaki,s N., Seal, C., Sanderson, R., et al. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112, 794–811. https://doi.org/10.1017/S0007114514001366

    Barua, D. N. (1965). Classification of the tea plant: Species hybrids. Two Bud, 12, 13–27.

    Baruah, R. K. G., Tamuli, A. K., & Teron, R. (2019). Effect of integrated use of organic and inorganic nitrogen sources on growth, development and yield of young clonal tea (Camellia sinensis (L) O. Kuntze). International Journal of Advanced Scientific Research and Management, 4(3), 95-99.

    Bisen J. S., & Singh, A. K. (2012). Impact of inorganic to organic cultivation practices on yield of tea in Darjeeling hills – a case study. Indian Journal of Horticulture, 69(2), 288–291.

    Bokhtiar, S. M., & Sakurai, K. (2005). Effects of organic manure and chemical fertilizer on soil fertility and productivity of plant and ratoon crops of sugarcane. Archives of Agronomy and Soil Science, 51(3), 325-334. https://doi.org/10.1080/03650340500098006

    Bonheure, D., & Willson, K. C. (1992). Mineral nutrition and fertilizers. In K. C. Willson & M. N. Clifford (Eds.), Tea (pp. 269-329). Springer. https://doi.org/10.1007/978-94-011-2326-6_9

    Bouldin, D. R. (1998). Effect of green manure on soil organic matter content and nitrogen availability. In Green Manure in Rice Farming: Proceedings of a Symposium on Sustainable Agriculture.

    Burger, M., Jackson, L. E., Lundquist, E. J., Louie, D. T., Miller, R. L., Rolston, D. E., & Scow, K. M. (2005). Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes. Biology and Fertility of Soils, 42(2), 109-118. https://doi.org/10.1007/s00374-005-0007-z

    Cabrera, C., Gimenez, R., & Lopez, M. C. (2003). Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry, 51(15), 4427-4435. https://doi.org/10.1021/jf0300801

    Çakmakçı, R. (2016). Screening of multi-trait rhizobacteria for improving the growth, enzyme activities, and nutrient uptake of tea (Camellia sinensis). Communications in Soil Science and Plant Analysis, 47(13-14), 1680-1690. https://doi.org/10.1080/00103624.2016.1206559

    Çakmakçı, R., Dönmez, M. F., Ertürk, Y., Erat, M., Haznedar, A., & Sekban, R. (2010). Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil, 332(1-2), 299-318. https://doi.org/10.1007/s11104-010-0295-4

    Çakmakçı, R., Ertürk, Y., Varmazyari, A., Atasever, A., Kotan, R., Erat, M., Türkyılmaz, K., Sekban, R., & Haznedar, A. (2015). The effect of mixed cultures of plant growth promoting bacteria and mineral fertilizers on tea (Camellia sinensis L.) growth, yield, nutrient uptake, and enzyme activities. International Soil Science Congress. Sochi, Russia.

    Çakmakçı, R., Kotan, R., Atasever, A., Erat, M., Türkyılmaz, K., Sekban, R., & Haznedar, A. (2017). The effectiveness of co-vaccination of different plant growth bacteria for increasing yield, growth, enzyme activity and yield in tea. Journal of Field Crops Central Research Institute, 26, 86-91.

    Çalıkoğlu, E., & Bayrak, A. (2006). Black tea flavor. Turkey 9th Food Congress. Bolu, Turkey.

    Chen, Y. M., Tsao, T. M., Liu, C. C., Lin, K. C., & Wang, M. K. (2011). Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE). Journal of the Science of Food and Agriculture, 91, 1111-1117. https://doi.org/10.1002/jsfa.4291

    Chung, F. L., Schwartz, J., Herzog, C. R., & Yang, Y. M. (2003). Tea and cancer prevention: Studies in animals and humans. Journal of Nutrition, 133(10), 3268S-3274S. https://doi.org/10.1093/jn/133.10.3268s

    Das, S., Borua, P. K., & Bhagat, R. M. (2016). Soil nitrogen and tea leaf properties in organic and conventional farming systems under humid sub-tropical conditions. Organic Agriculture, 6(2), 119-132. https://doi.org/10.1007/s13165-015-0116-4

    Deng, M., Hou, M., Ohtsu, N. O., Yokoyama, T., Tanaka, H., Nakajima, K., Omata, R., & Kimura, S. D. B. (2017). Nitrous oxide emission from organic fertilizer and controlled release fertilizer in tea fields. Agriculture, 7(3), 29. https://doi.org/10.3390/agriculture7030029

    Ding R. X., & Huang X. A. (1991). Biogeochemical cycle of aluminium and fluorine in a tea garden soil system and its relationship to soil acidification. Acta Pedologica Sinica, 28(3), 229–236.

    Ding, Z. Y., Chen, Y., Zhou, M., & Fang, Y. Z. (1992). Inhibitory effect of green tea polyphenol and morin on the oxidative modification of low-density lipoprotein. Chinese Journal of Pharmacology and Toxicology, 6, 263-266.

    Duke, J. A. (2000). Handbook of medicinal herbs. CRC Press.

    Fallovo, C., Schreiner, M., Schwarz, D., Colla, G., & Krumbein, A. (2011). Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy brassica species. Journal of Agricultural and Food Chemistry, 59(8), 4198-4207. https://doi.org/10.1021/jf1048904

    Fang, X. M., Chen, F. S., Hu, X. F., Yuan, P. C., Li, J., & Chen, X. (2014). Aluminum and nutrient interplay across an age-chronosequence of tea plantations within a hilly red soil farm of subtropical china. Soil Science and Plant Nutrition, 60, 448–459. https://doi.org/10.1080/00380768.2014.912950

    Fernandes, V. C., Domingues, V. F., de Freitas, V., Delerue-Matos, C., & Mateus, N. (2012). Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chemistry, 134(4), 1926-1931. https://doi.org/10.1016/j.foodchem.2012.03.130

    Gebrewold, A. Z. (2018). Review on integrated nutrient management of tea (Camellia sinensis L.). Cogent Food & Agriculture, 4(1), 1543536. https://doi.org/10.1080/23311932.2018.1543536

    Gökhale, N. G. (1952). Soil and climatic condations for tea. Capital, Assam, 17, 13.

    Guo, J. H., Liu, X. J., Zhang, Z., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M., & Zhang, F. S. (2010). Significant acidification in major chinese croplands. Science, 327(5968), 1008-1010. https://doi.org/10.1126/science.1182570

    Hall, S. J., & Matson, P. A. (2003). Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecological Monographs, 73(1), 107-129. https://doi.org/10.1890/0012-9615(2003)073[0107:NSOTRF]2.0.CO;2

    Hallmann, E., Rusaczonek, A., & Rembiałkowska, E. (2007). The phenolic compounds content and antioxidant properties of the organic and conventional teas. Proceedings of the ICPH 2007 3rd International Conference on Polyphenols and Health. Kyoto, Japan.

    Han, W. Y., Wang, D. H., Fu, S. W., & Ahmed, S. (2018). Tea from organic production has higher functional quality characteristics compared with tea from conventional management systems in China. Biological Agriculture & Horticulture, 34(2), 120-131. https://doi.org/10.1080/01448765.2017.1396497

    Han, W. Y., Xu, J. M., Wei, K., Shi, R. Z., & Ma, L.F. (2013). Soil carbon sequestration, plant nutrients and biological activities affected by organic farming system in tea (Camellia sinensis (L.) O. Kuntze) fields. Soil Science and Plant Nutrition, 59(5), 727–739. https://doi.org/10.1080/00380768.2013.833857

    Hatanaka, A., & Harada, T. (1972). Purification and properties of alcohol dehydrogenas e from tea seed. Agricultual Biological Chemistry, 36, 2033-2035. https://doi.org/10.1080/00021369.1972.10860516

    Hayat, K., Iqbal, H., Malik, U., Bilal, U., & Mushtaq, S. (2015). Tea and its consumption: benefits and risks. Critical Reviews in Food Science and Nutrition, 55(7), 939-954. https://doi.org/10.1080/10408398.2012.678949

    Hayatsu, M., & Kosuge, N. (1993). Autotrophic nitrification in acid tea soils. Soil Science and Plant Nutriton, 39(2), 209-217. https://doi.org/10.1080/00380768.1993.10416992

    Haznedar, A., & Sekban, R. (2012). Tea growing. Turkish Republic Ministry of Food, Agriculture and Livestock, Department of Education, Extension and Publications, Farmer Training Series No:17.

    Henry, J. P., & Stephens-Larson, P. (1984). Reduction of chronic psychosocial hypertension in mice by decaffeinated tea. Hypertension, 6, 437-444. https://doi.org/10.1161/01.hyp.6.3.437

    Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B., & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. The Lancet, 342, 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-u

    Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science, 43(1), 89-143. https://doi.org/10.1080/10408690390826464

    Imai, K., & Nakachi, K. (1985). Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ, 310, 693-696. https://doi.org/10.1136/bmj.310.6981.693

    Kacar, B. (1984). Tea fertilization. General Directorate of Tea Enterprises, Çay-Kur Broadcast No:4.

    Kanazawa, S., An, G. H., & Kaizu, T. (2005). Luboratoiy of soil microbiology, division of bioresource and bioenvironmental science effects of curtailment of nitrogen fertilizer on biological properties and tea leaf yield in acid tea field soils. Soil Science and Plant Nutrition, 51(5), 675-677. https://doi.org/10.1111/j.1747-0765.2005.tb00089.x

    Karthikeyini, B. K. (2002). Integrated nutrient management for tea with special reference to soil microbial activity (Doctoral dissertation, Bharathiar University).

    Katiyar, S. K., & Elmets, C. A. (2001). Green tea polyphenolic antioxidants and skin photoprotection (review). International Journal of Oncology, 18(6), 1307-1313. https://doi.org/10.3892/ijo.18.6.1307

    Kawashima, K., & Yamanishi, T. (1973). Thermal degredation of carotene. Nippon Nogei Kagaku Kaishi, 47, 79-83.

    Kazimierczak, R., Hallmann, E., Rusaczonek, A., & Rembialkowska, E. (2013). Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production. Renewable Agriculture and Food Systems, 30(3), 263–269. https://doi.org/10.1017/S1742170513000513

    Kemmitt, S. J., Wright, D., & Jones, D. L. (2005). Soil acidification used as a management strategy to reduce nitrate losses from agricultural land. Soil Biology and Biochemistry, 37(5), 867–875. https://doi.org/10.1016/j.soilbio.2004.10.001

    Kingdom-Ward, F. (1950). Does wild tea exist? Nature, 165, 297–299.

    Konishi, S., (1991). Chemistry of tea. In K. Muramatsu (Ed.), Tea Science (pp. 21–32). Asakura Shoten.

    Kono, S., Shinchi, K., Ikeda, N., Yanai, F., & Imanishi, K. (1992). Green tea consumption and serum lipid profiles: A cross-sectional study in northern Kyushu, Japan. Preventive Medicine, 21, 526-531. https://doi.org/10.1016/0091-7435(92)90060-u

    Kovacik, J., & Klejdus, B. (2014). Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chemistry, 142, 334-341. https://doi.org/10.1016/j.foodchem.2013.07.074

    Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., & Nishino, Y. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer and all causes in Japan - The Ohsaki Study. JAMA, 296(10), 1255-1265. https://doi.org/10.1001/jama.296.10.1255

    Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., & Chen, Z. Y. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. The Journal of Nutrition, 131, 2248-2251. https://doi.org/10.1093/jn/131.9.2248

    Levites, Y., Weinreb, O., Maor, G., Youdim, M. B., & Mandel, S. (2001). Green tea polyphenol (–)‐epigallocatechin‐3‐gallate prevents N‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced dopaminergic neurodegeneration. Journal of Neurochemistry, 78(5), 1073-1082. https://doi.org/10.1046/j.1471-4159.2001.00490.x

    Li, C., Notz, D., Tietsche, S., & Marotzke, J. (2013). The transient versus the equilibrium response of sea ice to global warming. Journal of Climate, 26(15), 5624-5636. https://doi.org/10.1175/JCLI-D-12-00492.1

    Li, Y. C., Li, Z., Li, Z. W., Jiang, Y. H., Weng, B. Q., & Lin, W. X. (2016). Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. Journal of Applied Microbiology, 121(3), 787-799. https://doi.org/10.1111/jam.13225

    Mahmood, T., Akhtar, N., & Khan, B. A. (2010). The morphology, characteristics, and medicinal properties of Camellia sinensis tea. Journal of Medicinal Plants Research, 4(19), 2028-2033. https://doi.org/10.5897/JMPR10.010

    Mandal, A. K. A., Kumar, R. R., & Thomas, J. (2007). An overview of PGPR trials in UPASI TRF. Planters' Chronicle, 103, 12-16.

    Mandel, S., Maor, G., & Youdim, M. B. (2004). Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: Effect of europrotective drugs rapomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. Journal of Molecular Neuroscience, 24(3), 401-416. https://doi.org/10.1385/jmn:24:3:401

    Marschner, H. (1995). Mineral nutrition in higher plants. Academic Press. https://doi.org/10.1016/B978-0-12-473542-2.X5000-7

    Meijide, A., Diez, J. A., Sanchez-Martin, L., Lopez-Fernandez, S., & Vallejo, A. (2007). Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a mediterranean climate. Agriculture, Ecosystems & Environment, 121(4), 383–394. https://doi.org/10.1016/j.agee.2006.11.020

    Morita, A., Takano, H., Oota, M., & Yoneyama, T. (2002). Nitrification and denitrification in an acidic soil of tea (Camellia sinensis L.) field estimated by 815N values of leached nitrogen from the soil columns treated with ammonium nitrate in the presence or absence of a nitrification inhibitor and with slow-release fertilizers. Soil Science and Plant Nutrition, 48(4), 585-593. https://doi.org/10.1080/00380768.2002.10409242

    Müftüoğlu, N, M., Yüce, E., Turna, T., Kabaoğlu, A., Özer, P., & Tanyel, G. (2010). Evaluation of some soil and plant characteristics of tea cultivated areas. 5th National Plant Nutrition And Fertilizer. İzmir, Turkey.

    Mukhtar, H., & Ahmad, N. (2000). Tea polyphenols: Prevention of cancer and optimizing health. The American Journal of Clinical Nutrition, 71(6), 1698S-1702S. https://doi.org/10.1093/ajcn/71.6.1698s

    Nakachi, K., Matsuyama, S., Miyake, S., Suganuma, M., & Imai, K. (2000). Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. BioFactors, 134(1-4), 49-54. https://doi.org/10.1002/biof.5520130109

    Namita, P., Mukesh, R., & Vijay, K. J. (2012). Camellia sinensis (green tea): A review. Global Journal of Pharmacology, 6(2), 52-59.

    Nioh, I., Isobe, T., & Osada, M. (1993). Microbial biomass and some biochemical characteristics of a strongly acid tea field soil. Soil Science and Plant Nutrition, 39(3), 617-626. https://doi.org/10.1080/00380768.1993.10419178

    Ok, Y. S., Chang, S. X., & Feng, Y. S. (2007). Sensitivity to acidification of forest soils in two watersheds with hydrological regions in the oil sands region of alberta. Pedosphere, 17(6), 747–757. https://doi.org/10.1016/S1002-0160(07)60090-3

    Onisi, M., Shimura, N., Nakamura, C., & Sato, M. (1981). A field test on the caries preventive effect of tea drinking. Koku Eisei Gakkai Zasshi, 31, 13-17.

    Özyazıcı, M. A., Sağlam, M., Dengiz, O., & Erkoçak, A. (2014). Factor analysis and geostatistic applications for tea cultivated soils case study; Rize Province. Toprak Su Dergisi, 3(1), 12-23.

    Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agro- ecosystems: Application of organic resource database. Agriculture, Ecosystems & Environment, 83, 27- 42. https://doi.org/10.1016/S0167-8809(00)00267-X

    Pan, T., Jankovic, J., & Le, W. (2003). Potential therapeutic properties of green tea polyphenols in Parkinson's disease. Drugs & Aging, 20(10), 711-21. https://doi.org/10.2165/00002512-200320100-00001

    Pang, X., & Letey, J. (2000). Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Science Society of America Journal, 64(1), 247–253. https://doi.org/10.2136/sssaj2000.641247x

    Petersen, S. Q., Regina, K., Pöllinger, A., Rigler, E., Valli, L., Yamulki, S., Esala, M., Fabbri, C., Syväsalo, E., & Vinther, F. P. (2006). Nitrous oxide emissions from organic and conventional crop rotations in five european countries. Agriculture, Ecosystems & Environment, 112, 200–206. https://doi.org/10.1016/j.agee.2005.08.021

    Ranganathan, V., & Natesan, S. (1985). Potassium nutrition of tea. In R. D. Munson (Ed.), Potassium in agriculture (pp. 981-1021). American Society of Agronmy, Crop Science Society of America, Soil Science Society of America.

    Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123-125. https://doi.org/10.1126/science.1176985

    Renner, E., & Melcher, F. (1978). Untersuchungen über die minorfettäsuren des milchfetts. Milchwissenschaft, 33, 281-284.

    Roberts, E. A. H., Wight, W., & Wood, D.J. (1958). Paper chromatography as an aid to the identification of thea camellias. The New Phytologist, 57, 211–225.

    Roussos, P. A. (2011). Phytochemicals and antioxidant capacity of orange (Citrus sinensis (L.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Scientia Horticulturae, 129(2), 253–258. https://doi.org/10.1016/j.scienta.2011.03.040

    Ruan, J. Y., Ma, L. F., & Shi, Y. Z. (2013). Potassium management in tea plantations: its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. Journal of Plant Nutrition and Soil Science, 176(3), 450-459. https://doi.org/10.1002/jpln.201200175

    Ruan, J., Ma, L., & Yang, Y. (2011). Magnesium nutrition on accumulation and transport of amino acids in tea plants. Journal of the Science of Food and Agriculture, 92(7), 1375–1383. https://doi.org/10.1002/jsfa.4709

    Ruan, J., Ma, L., Shi, Y., & Zhang, F. (2004). Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant (Camellia sinensis (L.) O. Kuntze). Plant and Soil, 263(1), 283–296. https://doi.org/10.1023/B:PLSO.0000047744.44940.96

    Saikia, G. K., Barbora, A. C., & Deka, M. K. (2014). Pest, disease and weed incidence and crop yield as influenced by organic culture in tea [Camellia sinensis (L.) O. Kuntze]. Agricultural Science Digest, 34(2), 119-122. https://doi.org/10.5958/0976-0547.2014.00028.7

    Sakanaka, S. (1997). Green tea polyphenols for prevention of dental caries. In T. Ymamoto, L. R. Juneja, D-C. Chu & M. Kim (Eds.), Chemistry and applications of green tea (pp. 87-101). CRC Press.

    Sakanaka, S., Kim, M., Taniguchi, M., & Yamamoto, T. (1989). Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agricultural and Biological Chemistry, 53, 2307-11. https://doi.org/10.1080/00021369.1989.10869665

    Sato, Y., Nakatsuka, H., Watanabe, T., Hisamichi, S., Shimizu, H., & Fujisaku, S. (1989). Possible contribution of green tea drinking habits to the prevention of stroke. The Tohoku Journal of Experimental Medicine, 157(4): 337-43. https://doi.org/10.1620/tjem.157.337

    Schreier, P. (1988). Modern methods of plant analysis. New Series, 8, 296.

    Sealy, J. (1937). Species of Camellia in cultivation. Journal of the Royal Horticultural Society, 62, 352–369.

    Sealy, J. R. (1958). A revision of the genus Camellia. Royal Horticultural Society.

    Setiawan, V. W., Zhang, Z. F., Yu, G. P., Lu, Q. Y., Li, Y. L., Lu, M. L., Wang, M. R., Guo, C. H., Yu, S. Z., Kurtz, R. C., & Hsieh, C. C. (2001). Protective effect of green tea on the risks of chronic gastritis and stomach cancer. International Journal of Cancer, 92(4), 600-604. https://doi.org/10.1002/ijc.1231

    Shaharoona, B., Arshad, M., Zahir, Z. A., & Khalid, A. (2006). Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry, 38(9), 2971-2975. https://doi.org/10.1016/j.soilbio.2006.03.024

    Sharma, D., & Kayang, H. (2017). Effects of Arbuscular mycorrhizal fungi (AMF) on Camellia sinensis (L.) O. Kuntze under greenhouse conditions. Journal of Experimental Biology, 5, 235-241. https://doi.org/10.18006/2017.5(2).235.241

    Sharma, V. S., & Ranhanathan, V. (1985). The world of tea today. Outlook an Agriculture, 14(1), 35–36.

    Shi, S. T., Wang, Z. Y., Smith, T. J., Hong, J. Y., Chen, W. F., Ho, C. T., & Yang, C. S. (1994). Effects of green tea and black tea on 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone bioactivation, DNA methylation and lung tumorigenesis in A/J mice. Cancer Research, 54, 4641-4647.

    Singh, B. N., Shankar, S., & Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807-1821. https://doi.org/10.1016/j.bcp.2011.07.093

    Singh, H. R., Deka, M., & Das, S. (2015). Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Functional & Integrative Genomics, 15(4), 461-480. https://doi.org/10.1007/s10142-015-0436-1

    Singh, S., Pandey, A., Kumar, B., & Palni, L. M. S. (2010). Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with Arbuscular mycorrhizal fungi in an acid soil. Biology and Fertility of Soils, 46(5), 427–433. https://doi.org/10.1007/s00374-010-0448-x

    Smith, D. M., & Dou, Q. P. (2001). Green tea polyphenol epigallocatechin inhibits DNA replication and consequently induces leukemia cell apoptosis. International Journal of Molecular Medicine, 27(6), 645-652. https://doi.org/10.3892/ijmm.7.6.645

    Songachan, L. S. (2012). Studies on diversity of Arbuscular mycorrhizal fungi associated with Flemingia vestita Benth ex Baker (Doctoral dissertation, North-Eastern Hill University).

    Subramanian, K. S., Marimuthu, S., & Rajkishore, S. K. (2013). Carbon sequestration pattern in conventional and organic tea plantations. International Journal of Tea Science, 9(4), 14–18.

    Sumpio, B. E., Cordova, A. C., Berke-Schlessel, D. W., Qin F., & Chen, Q. H., (2006). Green tea, the “Asian Paradox,” and cardiovascular disease. Journal of the American College of Surgeons, 202(5), 813-820. https://doi.org/10.1016/j.jamcollsurg.2006.01.018

    Suyama, K., & Adachi, S. (1980). Origin of alkyl-substituted pyridines in food flavor: Formation of the pyridines from the reaction of alkanals with amino acids. Journal of Agricultural and Food Chemistry, 28, 546-549. https://doi.org/10.1021/jf60229a048

    Syväsalo, E., Regina, K., Turtola, E., Lemola, R., & Esala, M. (2006). Fluxes of nitrous oxide and methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in western Finland. Agriculture, Ecosystems & Environment, 113, 342–348. https://doi.org/10.1016/j.agee.2005.10.013

    Tachibana, N., Yoshikawa, S., & Ikeda, K. (1995). Influences of heavy application of nitrogen on soil acidification and root growth in tea fields. Japanese Journal of Crop Science, 64(3), 516-522.

    Tanwar, A., Aggarwal, A., Kadian, N., & Gupta, A. (2013). Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annuum. Journal of Soil Science and Plant Nutrition, 13(1), 55-66. https://doi.org/10.4067/S0718-95162013005000006

    Tariq, M., Naveed, A., & Barkat Ali, K. (2010). The morphology, characteristics and medicinal properties of ‘Camellia sinensis’ tea. Journal of Medicinal Plants Research, 4(19), 2028-2033. https://doi.org/10.5897/JMPR10.010

    Tekeli, S. T. (1962). Tea technology. Ankara University Faculty of Agriculture Publications 190.

    Tekeli, S. T. (1976). Tea growing-pocessing-marketing. Dönüm Yayınları No: 5.

    Tosun, İ., & Karadeniz, B. (2005). Antioxidant activity of tea and tea phenolics. Ondokuz Mayıs University Agriculture Faculty Journal, 20(1), 78-83.

    Tsuneki, H., Ishizuka, M., Terasaw, M., Wu, J., Sasaoka, T., & Kimura, I. (2004). Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacology, 4, 18. https://doi.org/10.1186%2F1471-2210-4-18

    Turna T., Haznedar, A., Kalcıoğlu, Z., & Sekban, R. (2008). Training notes for improving yield and quality in tea production in Of District. Chamber of Agriculture No: TR 0502.02/LDI-268.

    Üstün, Ç., & Demirci, N. (2013). Historical development and medical evaluation of tea plant (Camellia sinensis L.). Lokman Hekim Journal, 3(3), 5-12.

    Venkatesan, S., & Ganapathy, M. N. K. (2004). Impact of nitrogen and potassium fertiliser application on quality of ctc teas. Food Chemistry, 84(3), 325-328. https://doi.org/10.1016/S0308-8146(03)00215-2

    Venkatesan, S., Murugesan, S., Ganapathy, M. N. K., & Verma, D. P. (2004). Long-Term impact of nitrogen and potassium fertilizers on yield, soil nutrients and biochemical parameters of tea. Journal of the Science of Food and Agriculture, 84(14), 1939-1944. https://doi.org/10.1002/jsfa.1897

    Venkatesan, S., Senthurpandian V. K., Murugesan, S., Maibaum, W., & Ganapathy, M. N. K. (2006). Quality standards of CTC black teas as influenced by sources of potassium fertilizer. Journal of the Science of Food And Agriculture, 86(5), 799-803. https://doi.org/10.1002/jsfa.2418

    Visser, T. (1969). Tea, Camellia sinensis (L.) O. Kuntze. In F. P. Ferwarda & F. Wit (Eds.), Outline of perennial crop breeding in the tropics (pp. 459-493). H. Veenman & Zonen.

    Vuong, Q. V., Bowyer, M. C., & Roach, P. D. (2011). L-Theanine: Properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture, 91(11), 1931-1939. https://doi.org/10.1002/jsfa.4373

    Wang, K., & Ruan, J. Y. (2009). Analysis of chemical components in green tea in relation with perceived quality, a case study with longjing teas. International Journal of Food Science & Technology, 44(12), 2476-2484. https://doi.org/10.1111/j.1365-2621.2009.02040.x

    Wang, Y., Wei, X., & Jin, Z. (2009). Structure analysis of a neutral polysaccharide isolated from green tea. Food Research International, 42(5-6), 739-745. https://doi.org/10.1016/j.foodres.2009.03.011

    Wu, A. H., & Yu, M. C. (2006). Tea, hormone-related cancers and endogenous hormone levels. Molecular Nutrition & Food Research, 50(2), 160-169. https://doi.org/10.1002/mnfr.200500142

    Wu, L. Y., Juan, C. C., Ho, L. T., Hsu, Y. P., & Hwang, L. S. (2004). Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. Journal of Agricultural and Food Chemistry, 52(3), 643-48. https://doi.org/10.1021/jf030365d

    Yang, M. H., Wang, C. H., & Chen, H. L. (2001). Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemic rats fed high-sucrose diet. The Journal of Nutritional Biochemistry, 12, 14-20. https://doi.org/10.1016/s0955-2863(00)00140-6

    Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., & Singanusong, R. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59(3), 113−122. https://doi.org/10.1007/s11130-004-0049-7

    Yuan, D., Yang, D., Pu, G., Zhang, Q., Chen, X., Peng, W., Sun, J., Xiong, S., & Li, J. (2013). Fertility dynamics of three types of tea garden soils ın Western Sichuan, China. Pakistan Journal of Agriculture Science, 50(1), 29-35.

    Zaman, Q. U., Islam, S. U., Hamid, F. S., Ahmad, F., & Aslam, S. (2016). Effect of follar applied nitregenous fertilizer on growth and yield of tea (Camellia sinensis L.). Journal of Agricultural Research, 54(2), 185-194.

    Zhang, Z. X., & Roman, G. C. (1993). Worldwide occurrence of Parkinson's disease: An updated review. Neuroepidemiology, 12(4), 195-208. https://doi.org/10.1159/000110318

    Zhu, Q. Y., Hackman, R. M., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Antioxidative activities of oolong tea. Journal of Agricultural and Food Chemistry, 50(23), 6929-6934. https://doi.org/10.1021/jf0206163

    Zhu, Q. Y., Huang, Y., Tsang, D. S. C., & Chen, Z. Y. (1999).  Regeneration of alpha-tocopherol in human LDL by green tea catechins. Journal of Agricultural and Food Chemistry, 47, 2020-2025. https://doi.org/10.1021/jf9809941

    Zou, Y., Hirono, Y., Yanai, Y., Hattori, S.,Toyoda, S., & Yoshida, N. (2014). Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (Camellia sinensis) in Shizuoka, Central Japan. Soil Biology and Biochemistry, 77, 276-291. https://doi.org/10.1016/j.soilbio.2014.06.016