|  e-ISSN: 2757-6620

Original article | Journal of Agricultural Production 2021, Vol. 2(1) 1-6

The Effect of Some Vegetable Oils Added to Dairy Calf Rations on In Vitro Feed Value and Enteric Methane Production

Ali Kaya & Adem Kaya

pp. 1 - 6   |  DOI: https://doi.org/10.29329/agripro.2021.344.1   |  Manu. Number: MANU-2106-12-0001.R3

Published online: June 29, 2021  |   Number of Views: 128  |  Number of Download: 582


The aim of this study was to determine the effects of the addition of Safflower, Sunflower and Corn vegetable oils to dairy cattle rations on in vitro gas and methane production, true dry matter (TDMD), organic matter (TOMD) and NDF (TNDFD) digestibilities values ​​and microbial protein (MP) production. Dairy cattle TMR ration consisting of milk feed, corn silage, alfalfa hay and meadow hay was prepared as the control group, and the experimental groups were prepared with the addition of safflower, sunflower and corn vegetable oils at the level of 3% in each of the control groups, respectively.  Vegetable oils added to the diet significantly affected in vitro gas production and organic matter digestibility (OMD). Methane (ml) production values ​​in the experimental groups varied between 10.00 and 10.71 ml. The Metabolic energy (ME) and OMD values ​​of the control and experimental groups varied between 7.00 and 7.29 MJ/kg DM and between 53.78 and 51.20. TDMD values ​​of the rations were determined between 48.49 and 52.63%. While the control group had the highest TDMD value, the ration containing safflower oil had the lowest TDMD value. TNDFS values ​​of the rations varied between 67.26 and 68.80%. As a result; Since the vegetable oils added to the ration increase the net energy lactation (NEL) content of the ration, it can be said that it used to meet the energy needs of high milk yielding cattle in the lactation period, provided that they do not exceed the upper limits specified in the literature.

Keywords: Digestibilities, In vitro gas production, Methane, Microbial protein, Vegetable oils

How to Cite this Article?

APA 6th edition
Kaya, A. & Kaya, A. (2021). The Effect of Some Vegetable Oils Added to Dairy Calf Rations on In Vitro Feed Value and Enteric Methane Production . Journal of Agricultural Production, 2(1), 1-6. doi: 10.29329/agripro.2021.344.1

Kaya, A. and Kaya, A. (2021). The Effect of Some Vegetable Oils Added to Dairy Calf Rations on In Vitro Feed Value and Enteric Methane Production . Journal of Agricultural Production, 2(1), pp. 1-6.

Chicago 16th edition
Kaya, Ali and Adem Kaya (2021). "The Effect of Some Vegetable Oils Added to Dairy Calf Rations on In Vitro Feed Value and Enteric Methane Production ". Journal of Agricultural Production 2 (1):1-6. doi:10.29329/agripro.2021.344.1.

  1. AOAC (1998). Official methods of analysis. AOAC International. [Google Scholar]
  2. Ayaşan, T., & Karakozak, E. (2011). Korunmuş yağların hayvan beslemede kullanımı. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 6(1), 85-94. [Google Scholar]
  3. Bayat, A. R., Ventto, L., Kairenius, P., Stefanski, T., Leskinen, H., Tapio, I., Negussie, E., Vilkki, J., & Shingfield, K. J. (2017). Dietary forage to concentrate ratio and sunflower oil supplement alter rumen fermentation, ruminal methane emissions, and nutrient utilization in lactating cows. Translational Animal Science, 1(3), 277-286. https://doi.org/10.2527/tas2017.0032 [Google Scholar] [Crossref] 
  4. Beck, M. R. (2017). Mitigating enteric methane emissions from grazing beef cattle through fat supplementation (Doctoral dissertation, Oklahoma State University). [Google Scholar]
  5. Blümmel, M., & Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68(2-3), 107-117. https://doi.org/10.1016/S0301-6226(00)00241-4 [Google Scholar] [Crossref] 
  6. Blümmel, M., Steingaβ, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921. https://doi.org/10.1079/BJN19970089 [Google Scholar] [Crossref] 
  7. Darabighane, B., Tapio, I., Ventto, L., Kairenius, P., Stefański, T., Leskinen, H., & Bayat, A. R. (2021). Effects of starch level and a mixture of sunflower and fish oils on nutrient intake and digestibility, rumen fermentation, and ruminal methane emissions in dairy cows. Animals, 11(5), 1310. https://doi.org/10.3390/ani11051310 [Google Scholar] [Crossref] 
  8. Duncan, D. B. (1955) Multiple range and multiple f tests. Biometrics, 11, 1-42. https://doi.org/10.2307/3001478 [Google Scholar] [Crossref] 
  9. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., & Tempio, G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).  http://www.fao.org/3/i3437e/i3437e.pdf [Google Scholar]
  10. Goel, G., Makkar, H. P., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010 [Google Scholar] [Crossref] 
  11. Gomaa, A. S., Kholif, A. E., Kholif, A. M., Salama, R., El-Alamy, H. A., & Olafadehan, O. A. (2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. Journal of Agricultural and Food Chemistry, 66(8), 1751-1759. https://doi.org/10.1021/acs.jafc.7b04704 [Google Scholar] [Crossref] 
  12. Haisan, J., Sun, Y., Guan, L. L., Beauchemin, K. A., Iwaasa, A., Duval, S., & Oba, M. (2014). The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. Journal of Dairy Science, 97(5), 3110-3119. https://doi.org/10.3168/jds.2013-7834 [Google Scholar] [Crossref] 
  13. Hegarty, R. S., & Gerdes, R. (1998). Hydrogen production and transfer in the rumen. Recent Advances in Animal Nutrition in Australia, 12, 37-44. [Google Scholar]
  14. Hook, S. E., Wright, A. D. G. & McBride, B. W. (2010). Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 2010, 945785. https://doi.org./10.1155/2010/945785 [Google Scholar]
  15. Kaya, A., Kaya, H., & Çelebi, Ş. (2012). Studies to reduce the production of methane from ruminant. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(2), 197-204. [Google Scholar]
  16. Kılıç, Ü., & Abdiwali, M. A. (2016). Alternatif kaba yem kaynağı olarak şarapçılık endüstrisi üzüm atıklarının in vitro gerçek sindirilebilirlikleri ve nispi yem değerlerinin belirlenmesi. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22(6), 895-901. [Google Scholar]
  17. Lopez, S., Makkar, H. P., & Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In P. E. Vercoe, H. P. S. Makkar & A. C. Schlink (Eds.), In vitro screening of plant resources for extra-nutritional attributes in ruminants: Nuclear and related methodologies (pp. 191-231). Springer.  https://doi.org/10.1007/978-90-481-3297-3_10 [Google Scholar] [Crossref] 
  18. Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: From microbe to the farm scale. Animal, 4(3), 351-365. https://doi.org/10.1017/S1751731109990620 [Google Scholar] [Crossref] 
  19. Martinez-Fernandez, G., Abecia, L., Arco, A., Cantalapiedra-Hijar, G., Martin-Garcia, A. I., Molina-Alcaide, E., Kindermann, M., Duval, S., & Yanez-Ruiz, D. R. (2014). Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. Journal of Dairy Science, 97(6), 3790-3799. https://doi.org/10.3168/jds.2013-7398 [Google Scholar] [Crossref] 
  20. Mathison, G. W. (1997). Effect of canola oil on methane production in steers. Canadian Journal of Animal Science, 77, 545-546. [Google Scholar]
  21. McAllister, T. A., Cheng, K. J., Okine, E. K., & Mathison, G. W. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science, 76(2), 231-243. https://doi.org/10.4141/cjas96-035 [Google Scholar] [Crossref] 
  22. Menke, H. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55. [Google Scholar]
  23. Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. https://doi.org/10.1017/S0021859600086305 [Google Scholar] [Crossref] 
  24. Murray, R. M., Bryant, A. M., & Leng, R. A. (1976). Rates of production of methane in the rumen and large intestine of sheep. British Journal of Nutrition, 36(1), 1-14. https://doi.org/10.1079/bjn19760053 [Google Scholar] [Crossref] 
  25. Navarro‐Villa, A., O'Brien, M., López, S., Boland, T. M., & O'Kiely, P. (2013). In vitro rumen methane output of grasses and grass silages differing in fermentation characteristics using the gas‐production technique (GPT). Grass and Forage Science, 68(2), 228-244. https://doi.org/10.1111/j.1365-2494.2012.00894.x [Google Scholar] [Crossref] 
  26. Sejian, V., Lal, R., Lakritz, J., & Ezeji, T. (2011). Measurement and prediction of enteric methane emission. International Journal of Biometeorology, 55(1), 1-16. https://doi.org/10.1007/s00484-010-0356-7 [Google Scholar] [Crossref] 
  27. Van Soest, P. V., Robertson, J. B., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 [Google Scholar] [Crossref] 
  28. Vargas, J. E., Andrés, S., López-Ferreras, L., Snelling, T. J., Yáñez-Ruíz, D. R., García-Estrada, C., & López, S. (2020). Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-58401-z [Google Scholar] [Crossref] 
  29. Vargas, J. E., Andrés, S., Snelling, T. J., López-Ferreras, L., Yáñez-Ruíz, D. R., García-Estrada, C., & López, S. (2017). Effect of sunflower and marine oils on ruminal microbiota, in vitro fermentation and digesta fatty acid profile. Frontiers in Microbiology, 8, 1124. https://doi.org/10.3389/fmicb.2017.01124 [Google Scholar] [Crossref] 
  30. Wright, A. D. G., & Klieve, A. V. (2011). Does the complexity of the rumen microbial ecology preclude methane mitigation?. Animal Feed Science and Technology, 166, 248-253. https://doi.org/10.1016/j.anifeedsci.2011.04.015 [Google Scholar] [Crossref] 
  31. Zhang, X. M., Smith, M. L., Gruninger, R. J., Kung Jr, L., Vyas, D., McGinn, S. M., & Beauchemin, K. A. (2021). Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. Journal of Animal Science, 99(4), 1-10. https://doi.org/10.1093/jas/skab081 [Google Scholar] [Crossref]