|  e-ISSN: 2757-6620

Original article | Journal of Agricultural Production 2021, Vol. 2(1) 7-15

The Effects of Salicylic, Folic and Ascorbic Acid Treatment on Shelf Life Quality of Broccoli Florets

Jale Bilgin

pp. 7 - 15   |  DOI: https://doi.org/10.29329/agripro.2021.344.2   |  Manu. Number: MANU-2105-23-0002.R3

Published online: June 29, 2021  |   Number of Views: 261  |  Number of Download: 582


This study aims to investigate the effect of Salicylic acid (2 mM), Folic acid (5 mg L−1) and Ascorbic acid (2 mM) treatments on the shelf life and quality of 'Belstar F1' broccoli variety. Treated broccoli heads were stored at 21±2˚C for 4 days in plastic containers with lids. It is determined that at the end of the storage period, the lowest weight loss (2.74%), total soluble solids (8.07%), pH value (7.14) and the highest amount of titratable acidity (0.12%) were found in the group treated with ascorbic acid and the least change in color parameters (L*; 29.41, a*; -4.59, b*; 10.78) and the highest total chlorophyll content (0.32 mg/g) in the group treated with folic acid. It is thought that the effects of ascorbic acid, salicylic acid and folic acid treatment at postharvest storage period should be investigated in detail in molecular and biochemical studies for more concrete data.

Keywords: Ascorbic acid, Broccoli florets, Folic acid, Postharvest, Salicylic acid

How to Cite this Article?

APA 6th edition
Bilgin, J. (2021). The Effects of Salicylic, Folic and Ascorbic Acid Treatment on Shelf Life Quality of Broccoli Florets . Journal of Agricultural Production, 2(1), 7-15. doi: 10.29329/agripro.2021.344.2

Bilgin, J. (2021). The Effects of Salicylic, Folic and Ascorbic Acid Treatment on Shelf Life Quality of Broccoli Florets . Journal of Agricultural Production, 2(1), pp. 7-15.

Chicago 16th edition
Bilgin, Jale (2021). "The Effects of Salicylic, Folic and Ascorbic Acid Treatment on Shelf Life Quality of Broccoli Florets ". Journal of Agricultural Production 2 (1):7-15. doi:10.29329/agripro.2021.344.2.

  1. Al Ubeed, H. M. S., Wills, R. B. H., Bowyer, M. C., Vuong, Q. V., & Golding, J. B. (2017). Interaction of exogenous hydrogen sulphide and ethylene on senescence of green leafy vegetables. Postharvest Biology and Technology, 133, 81-87. https://doi.org/10.1016/j.postharvbio.2017.07.010 [Google Scholar] [Crossref] 
  2. Alaey, M., Babalar, M., Naderi, R., & Kafi, M. (2011). Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61(1), 91-94. https://doi.org/10.1016/j.postharvbio.2011.02.002 [Google Scholar] [Crossref] 
  3. Al-Said, M. A., & Kamal, A. M. (2008). Effect of foliar spray with folic acid and some amino acids on flowering, yield and quality of sweet pepper. Journal of Plant Production, 33(10), 7403-7412. https://doi.org/10.21608/jpp.2008.171240 [Google Scholar] [Crossref] 
  4. Azam, M., Hameed, L., Qadri, R., Ejaz, S., Aslam, A., Khan, M. I., Shen, J., Zhang, J., Nafees, M., Ahmad, I., Ghani, M. A., Chen, J., & Anjum, N. (2020). Postharvest ascorbic acid application maintained physiological and antioxidant responses of Guava (Psidium guajava L.) at ambient storage. Food Science and Technology. https://doi.org/10.1590/fst.19820 [Google Scholar] [Crossref] 
  5. Babalar, M., Asghari, M., Talaei, A., & Khosroshahi, A. (2007). Effect of pre-and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105(2), 449-453. https://doi.org/10.1016/j.foodchem.2007.03.021 [Google Scholar] [Crossref] 
  6. Büchert, A. M., Gómez Lobato, M. E., Villarreal, N. M., Civello, P. M., & Martínez, G. A. (2011). Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.). Journal of the Science of Food and Agriculture, 91(2), 355-361. https://doi.org/10.1002/jsfa.4193 [Google Scholar] [Crossref] 
  7. Cai, J. H., Luo, F., Zhao, Y. B., Zhou, Q., Wei, B. D., Zhou, X., & Ji, S. J. (2019). 24-Epibrassinolide treatment regulates broccoli yellowing during shelf life. Postharvest Biology and Technology, 154, 87-95. https://doi.org/10.1016/j.postharvbio.2019.04.019 [Google Scholar] [Crossref] 
  8. Cantwell, M., & Suslow, T. (1997). Broccoli: Recommendations for maintaining postharvest quality. Retrieved April 15, 2021, from http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Vegetables_English/?uid=6&ds=799 [Google Scholar]
  9. Casajús, V., Reyes Jara, A., Gergoff, G., Gómez Lobato, M., Civello, P., & Martínez, G. (2019). The time of the day to harvest affects the degreening, antioxidant compounds, and protein content during postharvest storage of broccoli. Journal of Food Biochemistry, 43(7), e12904. https://doi.org/10.1111/jfbc.12904 [Google Scholar] [Crossref] 
  10. Cefola, M., Amodio, M. L., Rinaldi, R., Vanadia, S., & Colelli, G. (2010). Exposure to 1-methylcyclopropene (1-MCP) delays the effects of ethylene on fresh-cut broccoli raab (Brassica rapa L.). Postharvest Biology and Technology, 58(1), 29-35. https://doi.org/10.1016/j.postharvbio.2010.05.001 [Google Scholar] [Crossref] 
  11. Chavan, R. F., & Sakhal, B. K. (2020). Studies on the effect of exogenous application of salicylic acid on post-harvest quality and shelf life of tomato fruit Cv. Abhinav. Food Resaerch, 4, 1444-1450. https://doi.org/10.26656/fr.2017.4(5).131 [Google Scholar] [Crossref] 
  12. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., & Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science, 266(5188), 1247-1250. https://doi.org/10.1126/science.266.5188.1247 [Google Scholar] [Crossref] 
  13. Dempsey, D. M. A., Shah, J., & Klessig, D. F. (1999). Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences, 18(4), 547-575. https://doi.org/10.1080/07352689991309397 [Google Scholar] [Crossref] 
  14. Deschene, A., Paliyath, G., Lougheed, E. C., Dumbroff, E. B., & Thompson, J. E. (1991). Membrane deterioration during postharvest senescence of broccoli florets: Modulation by temperature and controlled atmosphere storage. Postharvest Biology and Technology, 1(1), 19-31. [Google Scholar]
  15. Dogan, A., Topcu, Y., & Erkan, M. (2018). UV-C illumination maintains postharvest quality of minimally processed broccoli florets under modified atmosphere packaging. Acta Horticulturae, 1194, 537-544. https://doi.org/10.17660/ActaHortic.2018.1194.78 [Google Scholar] [Crossref] 
  16. Düzen, O. (2019). Farklı hasat sonrası uygulamaların ʻMarathon F1ʼ brokoli (Brassica oleracea var. italica) çeşidinin muhafaza süresi ve ürün kalitesi üzerine etkileri (Master’s thesis, Bursa Uludağ University). [Google Scholar]
  17. Fatemi, H., Mohammadi, S., & Aminifard, M. H. (2013). Effect of postharvest salicylic acid treatment on fungal decay and some postharvest quality factors of kiwi fruit. Archives of Phytopathology and Plant Protection, 46(11), 1338-1345. https://doi.org/10.1080/03235408.2013.767013 [Google Scholar] [Crossref] 
  18. Fernández-León, M. F., Fernández-León, A. M., Lozano, M., Ayuso, M. C., & González-Gómez, D. (2013). Altered commercial controlled atmosphere storage conditions for ‘Parhenon’ broccoli plants (Brassica oleracea L. var. italica). Influence on the outer quality parameters and on the health-promoting compounds. LWT-Food Science and Technology, 50(2), 665-672. https://doi.org/10.1016/j.lwt.2012.07.028 [Google Scholar] [Crossref] 
  19. Freddo, Á. R., Cechim, F. E., & Mazaro, S. M. (2013). Conservation of post-harvest leaves of green onion (Allium fistulosum L.) with the use of salicylic acid solution. Applied Research & Agrotechnology, 6(3), 87-94. https://doi.org/10.5935/PAeT.V6.N3.10 [Google Scholar] [Crossref] 
  20. Gil, M. I., Gorny, J. R., & Kader, A. A. (1998). Responses of 'Fuji' apple slices to ascorbic acid treatments and low-oxygen atmospheres. HortScience, 33(2):305-309. [Google Scholar]
  21. Gill, K. B. S., Dhaliwal, H. S., & Mahajan, B. V. C. (2014). Effect of post-harvest treatment of ascorbic acid on shelf-life and quality of guava (Psidium guajava L.) cv. Allahabad Safeda. International Journal of Agricultural Sciences and Veterinary Medicine, 2, 130-141. [Google Scholar]
  22. Gong, Y., & Mattheis, J. P. (2003). Effect of ethylene and 1-methylcyclopropene on chlorophyll catabolism of broccoli florets. Plant Growth Regulation, 40(1), 33-38. https://doi.org/10.1023/A:1023058003002 [Google Scholar] [Crossref] 
  23. Hajilou, J., & Fakhimrezaei, S. (2013). Effects of post-harvest calcium chloride or salicylic acid treatments on the shelf-life and quality of apricot fruit. The Journal of Horticultural Science and Biotechnology, 88(5), 600-601. https://doi.org/10.1080/14620316.2013.11513012 [Google Scholar] [Crossref] 
  24. Han, T., Wang, Y., Li, L., & Ge, X. (2003). Effect of exogenous salicylic acid on post harvest physiology of peaches. XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture. Toronto. https://doi.org/10.17660/ActaHortic.2003.628.74 [Google Scholar] [Crossref] 
  25. Hasperué, J. H., Gómez-Lobato, M. E., Chaves, A. R., Civello, P. M., & Martínez, G. A. (2013). Time of day at harvest affects the expression of chlorophyll degrading genes during postharvest storage of broccoli. Postharvest Biology and Technology, 82, 22-27. https://doi.org/10.1016/j.postharvbio.2013.02.021 [Google Scholar] [Crossref] 
  26. Hasperué, J. H., Guardianelli, L., Rodoni, L. M., Chaves, A. R., & Martínez, G. A. (2016). Continuous white–blue LED light exposition delays postharvest senescence of broccoli. LWT-Food Science and Technology, 65, 495-502. https://doi.org/10.1016/j.lwt.2015.08.041 [Google Scholar] [Crossref] 
  27. Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3(4), 297-304. https://doi.org/10.1080/17429140802320797 [Google Scholar] [Crossref] 
  28. Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005 [Google Scholar] [Crossref] 
  29. Jiang, A., Zuo, J., Zheng, Q., Guo, L., Gao, L., Zhao, S., Wang, Q., & Hu, W. (2019). Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Scientia Horticulturae, 251, 73-79. https://doi.org/10.1016/j.scienta.2019.03.016 [Google Scholar] [Crossref] 
  30. Kader, A. A. (1992). Postharvest biology and technology: An overview. Postharvest Technology of Horticultural Crops, 3311, Section 5f. [Google Scholar]
  31. Kant, K., Arora, A., Singh, V. P., & Kumar, R. (2013). Effect of exogenous application of salicylic acid and oxalic acid on post harvest shelf-life of tomato (Solanum lycopersicon L.). Indian Journal of Plant Physiology, 18(1), 15-21. https://doi.org/10.1007/s40502-013-0004-4 [Google Scholar] [Crossref] 
  32. Khademi, Z., & Ershadi, A. (2013). Postharvest application of salicylic acid improves storability of peach (Prunus persica cv. Elberta) fruits. International Journal of Agriculture and Crop Sciences, 5(6), 651. [Google Scholar]
  33. Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture & Biology, 6(1), 5-8. [Google Scholar]
  34. Lebermann, K. W. (1965). Post-harvest changes of broccoli stored in modified atmospheres (Doctoral dissertation, University of Illinois). [Google Scholar]
  35. Leslie, C. A., & Romani, R. J. (1988). Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology, 88(3), 833-837. https://doi.org/10.1104/pp.88.3.833 [Google Scholar] [Crossref] 
  36. Lin, L., Li, Q. P., Wang, B. G., Cao, J. K., & Jiang, W. B. (2007). Inhibition of core browning in ‘Yali’pear fruit by post-harvest treatment with ascorbic acid. The Journal of Horticultural Science and Biotechnology, 82(3), 397-402. https://doi.org/10.1080/14620316.2007.11512250 [Google Scholar] [Crossref] 
  37. Liu, K., Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45-53. https://doi.org/10.1016/j.scienta.2014.06.027 [Google Scholar] [Crossref] 
  38. Mo, Y., Gong, D., Liang, G., Han, R., Xie, J., & Li, W. (2008). Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post‐harvest storage. Journal of the Science of Food and Agriculture, 88(15), 2693-2699. https://doi.org/10.1002/jsfa.3395 [Google Scholar] [Crossref] 
  39. Nishikawa, F., Kato, M., Hyodo, H., Ikoma, Y., Sugiura, M., & Yano, M. (2003). Ascorbate metabolism in harvested broccoli. Journal of Experimental Botany, 54(392), 2439-2448. https://doi.org/10.1093/jxb/erg283 [Google Scholar] [Crossref] 
  40. Özer, M. H. (1999). Brokkolinin kontrollü atmosferde (KA) depolanma potansiyeli. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 15(1), 1-9. [Google Scholar]
  41. Popova, L., Pancheva, T., & Uzunova, A. (1997). Salicylic acid: Properties, biosynthesis and physiological role. Bulgarian Journal of Plant Physiology, 23(1-2), 85-93. [Google Scholar]
  42. R Core Team. (2020). R: A language and environment for statistical computing. https://www.R-project.org/ [Google Scholar]
  43. Raeisi, J., Pakkish, Z., & Saffari, V. R. (2017). Efficiency of folic acid in improving yield and fruit quality of strawberry. Journal of Plant Physiology & Breeding, 7(1), 15-25. [Google Scholar]
  44. Romani, R. J., Hess, B. M., & Leslie, C. A. (1989). Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. Journal of Plant Growth Regulation, 8(1), 63-69. https://doi.org/10.1007/BF02024927 [Google Scholar] [Crossref] 
  45. Sayyari, M., Babalar, M., Kalantari, S., Serrano, M., & Valero, D. (2009). Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biology and Technology, 53(3), 152-154. https://doi.org/10.1016/j.postharvbio.2009.03.005 [Google Scholar] [Crossref] 
  46. Shafiee, M., Taghavi, T. S., & Babalar, M. (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124(1), 40-45. https://doi.org/10.1016/j.scienta.2009.12.004 [Google Scholar] [Crossref] 
  47. Shi, J., Gao, L., Zuo, J., Wang, Q., Wang, Q., & Fan, L. (2016). Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharvest Biology and Technology, 116, 98-104. https://doi.org/10.1016/j.postharvbio.2016.01.007 [Google Scholar] [Crossref] 
  48. Sikora, M., & Świeca, M. (2018). Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry, 239, 1160-1166. https://doi.org/10.1016/j.foodchem.2017.07.067 [Google Scholar] [Crossref] 
  49. Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29-35. https://doi.org/10.1016/j.postharvbio.2015.11.019 [Google Scholar] [Crossref] 
  50. Srivastava, M. K., & Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science, 158(1-2), 87-96. https://doi.org/10.1016/S0168-9452(00)00304-6 [Google Scholar] [Crossref] 
  51. Takeda, Y., Yoza, K. I., Nogata, Y., & Ohta, H. (1993). Effects of storage temperatures on polyamine content of some leafy vegetables. Journal of the Japanese Society for Horticultural Science, 62(2), 425-430. [Google Scholar]
  52. Terdbaramee, U., Ratanakhanokchai, K., & Kanlavanarat, S. (2006). Control of postharvest browning of lychee fruit using ascorbic acid. IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality. Bangkok. https://doi.org/10.17660/ActaHortic.2006.712.86 [Google Scholar] [Crossref] 
  53. Topcu, Y., Dogan, A., Kasimoglu, Z., Sahin-Nadeem, H., Polat, E., & Erkan, M. (2015). The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiology and Biochemistry, 93, 56-65. https://doi.org/10.1016/j.plaphy.2015.02.016 [Google Scholar] [Crossref] 
  54. Tufail, A., Arfan, M., Gurmani, A. R., Khan, A., & Bano, A. (2013). Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan Journal of Botany, 45(S1), 75-82. [Google Scholar]
  55. Wang, C. Y., & Hruschka, H. W. (1977). Quality maintenance in polyethylene-packaged broccoli. Department of Agriculture, Agricultural Research Service. [Google Scholar]
  56. Wang, L., Liu, M., Wang, G., Dai, B., Yu, F., & Zhang, J. (2019). An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. Journal of Alloys and Compounds, 776, 43-51. https://doi.org/10.1016/j.jallcom.2018.10.214 [Google Scholar] [Crossref] 
  57. Wei, Y., Liu, Z., Su, Y., Liu, D., & Ye, X. (2011). Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. Journal of Food Science, 76(2), 126-132. https://doi.org/10.1111/j.1750-3841.2010.01987.x [Google Scholar] [Crossref] 
  58. Xu, C. J., Guo, D. P., Yuan, J., Yuan, G. F., & Wang, Q. M. (2006). Changes in glucoraphanin content and quinone reductase activity in broccoli (Brassica oleracea var. italica) florets during cooling and controlled atmosphere storage. Postharvest Biology and Technology, 42(2), 176-184.  https://doi.org/10.1016/j.postharvbio.2006.06.009 [Google Scholar] [Crossref] 
  59. Xu, F., Tang, Y., Dong, S., Shao, X., Wang, H., Zheng, Y., & Yang, Z. (2016). Reducing yellowing and enhancing antioxidant capacity of broccoli in storage by sucrose treatment. Postharvest Biology and Technology, 112, 39-45.  https://doi.org/10.1016/j.postharvbio.2015.09.038 [Google Scholar] [Crossref] 
  60. Xu, D., Zuo, J., Fang, Y., Yan, Z., Shi, J., Gao, L., Wang, Q., & Jiang, A. (2021). Effect of folic acid on the postharvest physiology of broccoli during storage. Food Chemistry, 339, 127981. https://doi.org/10.1016/j.foodchem.2020.127981 [Google Scholar] [Crossref] 
  61. Yuan, G., Sun, B., Yuan, J., & Wang, Q. (2010). Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chemistry, 118(3), 774-781. https://doi.org/10.1016/j.foodchem.2009.05.062 [Google Scholar] [Crossref] 
  62. Zhang, Y., Chen, K., Zhang, S., & Ferguson, I. (2003). The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28(1), 67-74. https://doi.org/10.1016/S0925-5214(02)00172-2 [Google Scholar] [Crossref] 
  63. Zheng, Q., Zuo, J., Gu, S., Gao, L., Hu, W., Wang, Q., & Jiang, A. (2019). Putrescine treatment reduces yellowing during senescence of broccoli (Brassica oleracea L. var. italica). Postharvest Biology and Technology, 152, 29-35. https://doi.org/10.1016/j.postharvbio.2019.02.014 [Google Scholar] [Crossref]