J Agri Pro   |  ISSN: 2757-6620

Review article | Journal of Agricultural Production 2021, Vol. 2(1) 32-43

Use of Phytochemicals as Feed Supplements in Aquaculture: A Review on Their Effects on Growth, Immune Response, and Antioxidant Status of Finfish

Yiğit Taştan & Mohamed Omar Abdalla Salem

pp. 32 - 43   |  DOI: https://doi.org/10.29329/agripro.2021.344.5   |  Manu. Number: MANU-2105-25-0003.R2

Published online: June 29, 2021  |   Number of Views: 21  |  Number of Download: 75


Abstract

Aquaculture production is increasing day by day to meet the protein need of the global population. Various feed additives are used in aquaculture to enhance growth, stimulate immunity, prevent diseases, and strengthen the antioxidant status of fish. Phytochemicals attract attention among these feed additives. As phytochemicals are natural products, they are considered to be safe for fish, humans, and the environment. In this paper, we reviewed recent studies that utilize phytochemicals as feed additives in cultured fish species. In agreement with the available literature, we inferred that phytochemicals could be used in aquaculture. However, as some studies reported undesirable effects on growth, we believe that phytochemicals are more effective in immunostimulation and enhancing antioxidant status rather than growth-promoting. Possible reasons for growth retardation were emphasized. Although available evidence suggests that phytochemicals display beneficial effects, we discussed the possible use of phytochemical combinations to obtain even more desirable results. To conclude, we think that phytochemicals can exert synergistic effects, and this approach should be investigated in future studies.

Keywords: Aquaculture, Feed additive, Fish, Growth, Immunostimulation, Phytochemical


How to Cite this Article?

APA 6th edition
Tastan, Y. & Salem, M.O.A. (2021). Use of Phytochemicals as Feed Supplements in Aquaculture: A Review on Their Effects on Growth, Immune Response, and Antioxidant Status of Finfish . Journal of Agricultural Production, 2(1), 32-43. doi: 10.29329/agripro.2021.344.5

Harvard
Tastan, Y. and Salem, M. (2021). Use of Phytochemicals as Feed Supplements in Aquaculture: A Review on Their Effects on Growth, Immune Response, and Antioxidant Status of Finfish . Journal of Agricultural Production, 2(1), pp. 32-43.

Chicago 16th edition
Tastan, Yigit and Mohamed Omar Abdalla Salem (2021). "Use of Phytochemicals as Feed Supplements in Aquaculture: A Review on Their Effects on Growth, Immune Response, and Antioxidant Status of Finfish ". Journal of Agricultural Production 2 (1):32-43. doi:10.29329/agripro.2021.344.5.

References
  1. Abd El-Hakim, Y. M., El-Houseiny, W., Abd Elhakeem, E. M., Ebraheim, L. L., Moustafa, A. A., & Mohamed, A. A. R. (2020). Melamine and curcumin enriched diets modulate the haemato-immune response, growth performance, oxidative stress, disease resistance, and cytokine production in Oreochromis niloticus. Aquatic Toxicology, 220, 105406.‏ https://doi.org/10.1016/j.aquatox.2020.105406 [Google Scholar] [Crossref] 
  2. Adeshina, I., Abdel-Tawwab, M., Tijjani, Z. A, Tiamiyu, L. O., & Jahanbakhshi, A. (2021). Dietary Tridax procumbens leaves extract stimulated growth, antioxidants, immunity, and resistance of Nile tilapia, Oreochromis niloticus, to monogenean parasitic infection. Aquaculture, 532, 736047. https://doi.org/10.1016/j.aquaculture.2020.736047 [Google Scholar] [Crossref] 
  3. Ahmadifar, E., Dawood M. A. O., Moghadam, M. S., Sheikhzadeh, N., Hoseinifar, S. H., & Musthafa, M. S. (2019). Modulation of immune parameters and antioxidant defense in zebrafish (Danio rerio) using dietary apple cider vinegar. Aquaculture, 513, 734412. https://doi.org/10.1016/j.aquaculture.2019.734412 [Google Scholar] [Crossref] 
  4. Almabrok, A. A., Amhamed, I. D., Mohamed, G. A., Bilen, S., & Altief, T. A. S. (2018). Effect of Tilia tomentosa methanolic extract on growth performance, digestive enzyme activity, immune system and haematological indices of common carp (Cyprinus carpio). Marine Science and Technology Bulletin, 7(1), 12-20. https://doi.org/10.33714/masteb.421047 [Google Scholar] [Crossref] 
  5. Arslan, G., Sönmez, A. Y., & Yanık, T. (2018). Effects of grape Vitis vinifera seed oil supplementation on growth, survival, fatty acid profiles, antioxidant contents and blood parameters in rainbow trout Oncorhynchus mykiss. Aquaculture Research, 49(6), 2256–2266. https://doi.org/10.1111/are.13686 [Google Scholar] [Crossref] 
  6. Awad, E., Austin, D., & Lyndon, A. R. (2013). Effect of black cumin seed oil (Nigella sativa) and nettle extract (Quercetin) on enhancement of immunity in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture, 388–391, 193–197. https://doi.org/10.1016/j.aquaculture.2013.01.008 [Google Scholar] [Crossref] 
  7. Bhattacharjee, P., Borah, A., & Das, S. (2020). Quercetin-induced amelioration of deltamethrin stress in freshwater teleost, Channa punctata: Multiple biomarker analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 227, 108626.‏ https://doi.org/10.1016/j.cbpc.2019.108626 [Google Scholar] [Crossref] 
  8. Bilen, S., Kızak, V., & Gezen, A. M. (2013). Floating fish farm unit (3FU). Is it an appropriate method for salmonid production?. Marine Science and Technology Bulletin, 2(1), 9-13. [Google Scholar]
  9. Bilen, S., Karga, M., Çelik Altunoğlu, Y., Ulu, F., & Biswas, G. (2020). Immune responses and growth performance of the aqueous methanolic extract of Malva sylvestris in Oncorhynchus mykiss. Marine Science and Technology Bulletin, 9(2), 159-167. https://doi.org/10.33714/masteb.746951 [Google Scholar] [Crossref] 
  10. Biller-Takahashi, J. D., & Urbinati, E. C. (2014). Fish immunology. The modification and manipulation of the innate immune system: Brazilian studies. Anais da Academia Brasileira de Ciências, 86(3), 1484-1506. https://doi.org/10.1590/0001-3765201420130159 [Google Scholar] [Crossref] 
  11. Bulfon, C., Bongiorno, T., Messina, M., Volpatti, D., Tibaldi, E., & Tulli, F. (2017). Effects of Panax ginseng extract in practical diets for rainbow trout (Oncorhynchus mykiss) on growth performance, immune response and resistance to Yersinia ruckeri. Aquaculture Research, 48(5), 2369-2379. https://doi.org/10.1111/are.13072 [Google Scholar] [Crossref] 
  12. Cao, J., Chen, J., Xie, L., Wang, J., Feng, C., & Song, J. (2015). Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquatic Toxicology, 167, 180–190. https://doi.org/10.1016/j.aquatox.2015.08.004. [Google Scholar] [Crossref] 
  13. Cavalcante, R. B., Telli, G. S., Tachibana, L., de Carla Dias, D., Oshiro, E., Natori, M. M., da Silva, W. F., & Ranzani-Paiva, M. J. (2020). Probiotics, prebiotics and synbiotics for nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17, 100343. https://doi.org/10.1016/j.aqrep.2020.100343 [Google Scholar] [Crossref] 
  14. Cengiz, F. (2001). Hayvanlarda zorlanım (stres) oluşturan etkenler. Journal of Research in Veterinary Medicine, 20, 147-153. [Google Scholar]
  15. Chakraborty, S. B., & Hancz, C. (2011). Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Reviews in Aquaculture, 3(3), 103–119. https://doi.org/10.1111/j.1753-5131.2011.01048.x [Google Scholar] [Crossref] 
  16. Chakraborty, S. B., Horn, P., & Hancz, C. (2014). Application of phytochemicals as growth‐promoters and endocrine modulators in fish culture. Reviews in Aquaculture, 6(1), 1-19. https://doi.org/10.1111/raq.12021 [Google Scholar] [Crossref] 
  17. Chen, W., Ai, Q., Mai, K., Xu, W., Liufu, Z., Zhang, W., & Cai, Y. (2011). Effects of dietary soybean saponins on feed intake, growth performance, digestibility and intestinal structure in juvenile japanese flounder (Paralichthys olivaceus). Aquaculture, 318(1-2), 95-100.‏ https://doi.org/10.1016/j.aquaculture.2011.04.050 [Google Scholar] [Crossref] 
  18. Chen, D., Wang, W., & Ru, S. (2015). Effect of dietary genistein on growth performance, digestive enzyme activity, and body composition of nile tilapia Oreochromis niloticus. Chinese Journal of Oceanology and Limnology, 33(1), 77-83.‏ https://doi.org/10.1007/s00343-015-4037-6 [Google Scholar] [Crossref] 
  19. Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology, 10, 1614. https://doi.org/10.3389/fphar.2019.01614 [Google Scholar] [Crossref] 
  20. Citarasu, T. (2010). Herbal biomedicines: A new opportunity for aquaculture industry. Aquaculture International, 18, 403–414. https://doi.org/10.1007/s10499-009-9253-7 [Google Scholar] [Crossref] 
  21. Dawood, M. A., Metwally, A. E. S., El-Sharawy, M. E., Ghozlan, A. M., Abdel-Latif, H. M., Van Doan, H., & Ali, M. A. (2020). The influences of ferulic acid on the growth performance, haemato-immunological responses, and immune-related genes of Nile tilapia (Oreochromis niloticus) exposed to heat stress. Aquaculture, 525, 735320. https://doi.org/10.1016/j.aquaculture.2020.735320 [Google Scholar] [Crossref] 
  22. de Oliveira, S. T. L., Soares, R. A. N., de Negreiros Sousa, S. M., Fernandes, A. W. C., Gouveia, G. V., & da Costa, M. M. (2020) Natural products as functional food ingredients for nile tilapia challenged with Aeromonas hydrophila. Aquaculture International, 28, 913-926. https://doi.org/10.1007/s10499-019-00503-1 [Google Scholar] [Crossref] 
  23. Eberhardt, M. V., Lee, C. Y., & Liu, R. H. (2000). Antioxidant activity of fresh apples. Nature, 405, 903–904. https://doi.org/10.1038/35016151 [Google Scholar] [Crossref] 
  24. Elbesthi, R. T. A., Yürüten Özdemir, K., Taştan, Y., Bilen, S., & Sönmez, A. Y. (2020). Effects of ribwort plantain (Plantago lanceolata) extract on blood parameters, immune response, antioxidant enzyme activities, and growth performance in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 46, 1295-1307. https://doi.org/10.1007/s10695-020-00790-z [Google Scholar] [Crossref] 
  25. Erguig, M., Yahyaoui, A., Fekhaoui, M., & Dakki, M. (2015). The use of garlic in aquaculture. European Journal of Biotechnology and Bioscience, 8(3), 28-33. [Google Scholar]
  26. Ferguson, R. M. W., Merrifield, D. L., Harper, G. M., Rawling, M. D., Mustafa, S., Picchietti, S., Balcazar, J. L., & Davies, S. J. (2010). The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 109(3), 851-862. https://doi.org/10.1111/j.1365-2672.2010.04713.x [Google Scholar] [Crossref] 
  27. Francis, G., Makkar, H. P., & Becker, K. (2002). Dietary supplementation with a quillaja saponin mixture improves growth performance and metabolic efficiency in common carp (Cyprinus carpio L.). Aquaculture, 203(3-4), 311-320.‏ https://doi.org/10.1016/S0044-8486(01)00628-7 [Google Scholar] [Crossref] 
  28. Ganeva, V. O., Korytář, T., Pecková, H., McGurk, C., Mullins, J., Yanes-Roca, C., Gela, D., Lepič, P., Policar, T., & Holzer, A. S. (2020). Natural feed additives modulate immunity and mitigate infection with Sphaerospora molnari (Myxozoa: Cnidaria) in common carp: A pilot study. Pathogens, 9(12), 1013. https://doi.org/10.3390/pathogens9121013 [Google Scholar] [Crossref] 
  29. Giri, S. S., Sukumaran, V., & Park, S. C. (2019). Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. Fish & Shellfish Immunology, 92, 612-620.‏ https://doi.org/10.1016/j.fsi.2019.06.053 [Google Scholar] [Crossref] 
  30. Glencross, B., Evans, D., Rutherford, N., Hawkins, W., McCafferty, P., Dods, K., Jones, B., Harris, D., Morton, L., & Sweetingham, M. (2006). The influence of the dietary inclusion of the alkaloid gramine, on rainbow trout (Oncorhynchus mykiss) growth, feed utilisation and gastrointestinal histology. Aquaculture, 253(1-4), 512-522. https://doi.org/10.1016/j.aquaculture.2005.07.009 [Google Scholar] [Crossref] 
  31. Hu, H., Liu, J., Li, Y., Zhang, Y., Mai, K., Ai, Q., Shao, M., & Yang, P. (2014). Effects of dietary daidzein on growth performance, activities of digestive enzymes, anti-oxidative ability and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Journal of Fisheries of China, 38(9), 1503-1513.‏ [Google Scholar]
  32. Jia, E., Yan, Y., Zhou, M., Li, X., Jiang, G., Liu, W., & Zhang, D. (2019). Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Animal Feed Science and Technology, 256, 114268. https://doi.org/10.1016/j.anifeedsci.2019.114268 [Google Scholar] [Crossref] 
  33. Jia, R., Li, Y., Cao, L., Du, J., Zheng, T., Qian, H., Gu, Z., Jeney, G., Xu, P., & Yin, G. (2019). Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 215, 56-66.‏ https://doi.org/10.1016/j.cbpc.2018.10.002 [Google Scholar] [Crossref] 
  34. Karga, M., Kenanoğlu, O. N., & Bilen, S. (2020). Investigation of antibacterial activity of two different medicinal plants extracts against fish pathogens. Journal of Agricultural Production, 1(1), 5-7. https://doi.org/10.29329/agripro.2020.341.2  [Google Scholar] [Crossref] 
  35. Kasumyan, A. O., & Døving, K. B. (2003). Taste preferences in fishes. Fish and Fisheries, 4(4), 289–347. https://doi.org/10.1046/j.1467-2979.2003.00121.x [Google Scholar] [Crossref] 
  36. Kim, S. S., Rahimnejad, S., Kim, K. W., Lee, B. J., & Lee, K. J. (2013). Effects of dietary supplementation of spirulina and quercetin on growth, innate immune responses, disease resistance against Edwardsiella tarda, and dietary antioxidant capacity in the juvenile olive flounder Paralichthys olivaceus. Fisheries and Aquatic Sciences, 16(1), 7-14.‏ https://doi.org/10.5657/FAS.2013.0007 [Google Scholar] [Crossref] 
  37. Koh, C. B., Romano, N., Zahrah, A. S., & Ng, W. K. (2016). Effects of a dietary organic acids blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Streptococcus agalactiae. Aquaculture Research, 47(2), 357-369. https://doi.org/10.1111/are.12492 [Google Scholar] [Crossref] 
  38. Kumari, J., & Sahoo, K. P. (2006). Dietary levamisole modulates the immune response and disease resistance of asian catfish Clarias batrachus (Linnaeus). Aquaculture Research, 37, 500-509. https://doi.org/10.1111/j.1365-2109.2006.01456.x [Google Scholar] [Crossref] 
  39. Lall, S. P., & Tibbetts, S. M. (2009). Nutrition, feeding, and behavior of fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/10.1016/j.cvex.2009.01.005 [Google Scholar] [Crossref] 
  40. Leitzmann, C. (2016). characteristics and health benefits of phytochemicals. Complementary Medicine Research, 23(2), 69–74. https://doi.org/10.1159/000444063 [Google Scholar] [Crossref] 
  41. Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M. E., Chi, F., Cravens, R. L., Oh, S., & Gay, C. G. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 49(1), 1-18. https://doi.org/10.1186/s13567-018-0562-6 [Google Scholar] [Crossref] 
  42. Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition, 78(3), 517–520. https://doi.org/10.1093/ajcn/78.3.517s [Google Scholar] [Crossref] 
  43. Mahfouz, M. E. (2015). Ameliorative effect of curcumin on aflatoxin B1-induced changes in liver gene expression of Oreochromis niloticus. Molecular Biology, 49(2), 275-286.‏ https://doi.org/10.1134/S0026893315020089 [Google Scholar] [Crossref] 
  44. Mahmoud, H. K., Al-Sagheer, A. A., Reda, F. M., Mahgoub, S. A., & Ayyat, M. S. (2017). Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture, 475, 16-23.‏ https://doi.org/10.1016/j.aquaculture.2017.03.043 [Google Scholar] [Crossref] 
  45. Makled, S. O., Hamdan, A. M., & El-Sayed, A. F. M. (2020). Growth promotion and immune stimulation in nile tilapia, Oreochromis niloticus, fingerlings following dietary administration of a novel marine probiotic, Psychrobacter maritimus S. Probiotics and Antimicrobial Proteins, 12(2), 365-374. https://doi.org/10.1007/s12602-019-09575-0 [Google Scholar] [Crossref] 
  46. Mani, J. S., Johnson, J. B., Steel, J. C., Broszczak, D. A., Neilsen, P. M., Walsh, K. B., & Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research, 284, 197989. https://doi.org/10.1016/j.virusres.2020.197989 [Google Scholar] [Crossref] 
  47. Manju, M., Akbarsha, M. A., & Oommen, O. V. (2012). In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch). Fish Physiology and Biochemistry, 38(2), 309-318.‏ https://doi.org/10.1007/s10695-011-9508-x [Google Scholar] [Crossref] 
  48. Ming, J., Ye, J., Zhang, Y., Xu, Q., Yang, X., Shao, X., Qiang, Y., & Xu, P. (2020). Optimal dietary curcumin improved growth performance, and modulated innate immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. Fish & Shellfish Immunology, 97, 540-553.‏ https://doi.org/10.1016/j.fsi.2019.12.074 [Google Scholar] [Crossref] 
  49. Mohamed, G. A., Amhamed, I. D., Almabrok, A. A., Barka, A. B. A., Bilen, S., & Elbeshti, R. T. (2018). Effect of celery (Apium graveolens) extract on the growth, haematology, immune response and digestive enzyme activity of common carp (Cyprinus carpio). Marine Science and Technology Bulletin, 7(2), 51-59. https://doi.org/10.33714/masteb.457721 [Google Scholar] [Crossref] 
  50. Nazeri, S., Farhangi, M., & Modarres, S. (2017). The effect of different dietary inclusion levels of rutin (a flavonoid) on some liver enzyme activities and oxidative stress indices in rainbow trout, Oncorhynchus mykiss (Walbaum) exposed to oxytetracycline. Aquaculture Research, 48(8), 4356-4362.‏ https://doi.org/10.1111/are.13257 [Google Scholar] [Crossref] 
  51. Omnes, M. H., Le Goasduff, J., Le Delliou, H., Le Bayon, N., Quazuguel, P., & Robin, J. H. (2017). Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile european seabass (Dicentrarchus labrax L.). Aquaculture Reports, 6, 21-27.‏  https://doi.org/10.1016/j.aqrep.2017.01.004 [Google Scholar] [Crossref] 
  52. Oomah, B. (1999). Health benefits of phytochemicals from selected canadian crops. Trends in Food Science & Technology, 10(6-7), 193–198. https://doi.org/10.1016/s0924-2244(99)00055-2  [Google Scholar] [Crossref] 
  53. Ou, W., Hu, H., Yang, P., Dai, J., Ai, Q., Zhang, W., Zhang, Y., & Mai, K. (2019). Dietary daidzein improved intestinal health of juvenile turbot in terms of intestinal mucosal barrier function and intestinal microbiota. Fish & Shellfish Immunology, 94, 132-141. ‏https://doi.org/10.1016/j.fsi.2019.08.059 [Google Scholar] [Crossref] 
  54. Özçelik, H., Taştan, Y., Terzi, E., & Sönmez, A. Y. (2020). Use of onion (Allium cepa) and garlic (Allium sativum) wastes for the prevention of fungal disease (Saprolegnia parasitica) on eggs of rainbow trout (Oncorhynchus mykiss). Journal of Fish Diseases, 43(10), 1325-1330. https://doi.org/10.1111/jfd.13229 [Google Scholar] [Crossref] 
  55. Peng, K., Wang, G., Wang, Y., Chen, B., Sun, Y., Mo, W., Li, G., & Huang, Y. (2020). Condensed tannins enhanced antioxidant capacity and hypoxic stress survivability but not growth performance and fatty acid profile of juvenile japanese seabass (Lateolabrax japonicus). Animal Feed Science and Technology, 269, 114671.‏ https://doi.org/10.1016/j.anifeedsci.2020.114671 [Google Scholar] [Crossref] 
  56. Pês, T. S., Saccol, E. M. H., Ourique, G. M., Londero, É. P., Gressler, L. T., Finamor, I. A., Rotili, D. A., Golombieski, J. I., Glanzner, W. G., Llesuy, S. F., Gonçalves, P. B. D., Neto, J. R., Baldisserotto, B., & Pavanato, M. A. (2016). Effect of diets enriched with rutin on blood parameters, oxidative biomarkers and pituitary hormone expression in silver catfish (Rhamdia quelen). Fish Physiology and Biochemistry, 42(1), 321-333.‏ https://doi.org/10.1007/s10695-015-0140-z [Google Scholar] [Crossref] 
  57. Pês, T. S., Saccol, E. M., Londero, É. P., Bressan, C. A., Ourique, G. M., Rizzetti, T. M., Prestes, O. D., Zanella, R., Baldisserotto, B., & Pavanato, M. A. (2018). Protective effect of quercetin against oxidative stress induced by oxytetracycline in muscle of silver catfish. Aquaculture, 484, 120-125.‏ https://doi.org/10.1016/j.aquaculture.2017.10.043 [Google Scholar] [Crossref] 
  58. Pickering, A. D. (1993). Growth and stress in fish production. In G. A. E. Gall & H. Chen (Eds.), Genetics in Aquaculture (pp. 51-63). Elsevier. https://doi.org/10.1016/b978-0-444-81527-9.50010-5 [Google Scholar] [Crossref] 
  59. Safari, R., Hoseinifar, S. H., Imanpour, M. R., Mazandarani, M., Sanchouli, H., & Paolucci, M. (2020). Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture, 528, 735494.‏ https://doi.org/10.1016/j.aquaculture.2020.735494 [Google Scholar] [Crossref] 
  60. Salem, M. O. A., Salem, T. A., Yürüten Özdemir, K., Sönmez, A. Y., Bilen, S., & Güney, K. (2021). Antioxidant enzyme activities and immune responses in rainbow trout (Onchorhynchus mykiss) juveniles fed diets supplemented with dandelion (Taraxacum officinalis) and lichen (Usnea barbata) extracts. Fish Physiology and Biochemistry. https://doi.org/10.1007/s10695-021-00962-5 [Google Scholar] [Crossref] 
  61. Sangari, M., Sotoudeh, E., Bagheri, D., Morammazi, S., & Mozanzadeh, M. T. (2021). Growth, body composition, and hematology of yellowfin seabream (Acanthopagrus latus) given feeds supplemented with organic acid salts (sodium acetate and sodium propionate). Aquaculture International, 29, 261-273. https://doi.org/10.1007/s10499-020-00625-x [Google Scholar] [Crossref] 
  62. Schiller Vestergren, A., Wagner, L., Pickova, J., Rosenlund, G., Kamal‐Eldin, A., & Trattner, S. (2012). Sesamin modulates gene expression without corresponding effects on fatty acids in Atlantic salmon (Salmo salar L.). Lipids, 47(9), 897-911. https://doi.org/10.1007/s11745-012-3697-7 [Google Scholar] [Crossref] 
  63. Serrano, E., Storebakken, T., Borquez, A., Penn, M., Shearer, K. D., Dantagnan, P., & Mydland, L. T. (2011). Histology and growth performance in rainbow trout (Oncorhynchus mykiss) in response to increasing dietary concentration of sparteine, a common alkaloid in lupins. Aquaculture Nutrition, 18(3), 313-320.‏ https://doi.org/10.1111/j.1365-2095.2011.00899.x [Google Scholar] [Crossref] 
  64. Shin, H. S., Yoo, J. H., Min, T. S., Lee, K. Y., & Choi, C. Y. (2010a). The effects of quercetin on physiological characteristics and oxidative stress resistance in olive flounder, Paralichthys olivaceus. Asian-Australasian Journal of Animal Sciences, 23(5), 588-597.‏ https://doi.org/10.5713/ajas.2010.90624 [Google Scholar] [Crossref] 
  65. Shin, H. S., Yoo, J. H., Min, T. S., Lee, J., & Choi, C. Y. (2010b). Effect of quercetin on the activity and mRNA expression of antioxidant enzymes and physiological responses in olive flounder (Paralichthys olivaceus) exposed to cadmium. Asian-Australasian Journal of Animal Sciences, 23(6), 742-749. https://doi.org/10.5713/ajas.2010.10006 [Google Scholar] [Crossref] 
  66. Sönmez, A. Y. (2017). Evaluating two different additive levels of fully autolyzed yeast, Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, liver histology and fatty acid composition. Turkish Journal of Fisheries and Aquatic Sciences, 17(2), 379-385. https://doi.org/10.4194/1303-2712-v17_2_17 [Google Scholar] [Crossref] 
  67. Sönmez, A. Y., Bilen, S., Alak, G., Hisar, O., Yanık, T., & Biswas, G. (2015). Growth performance and antioxidant enzyme activities in rainbow trout (Oncorhynchus mykiss) juveniles fed diets supplemented with sage, mint and thyme oils. Fish Physiology and Biochemistry, 41(1), 165-175. https://doi.org/10.1007/s10695-014-0014-9 [Google Scholar] [Crossref] 
  68. Sönmez, A. Y., Bilen, S., Albayrak, M., Yılmaz, S., Biswas, G., Hisar, O., & Yanık, T. (2015). Effects of dietary supplementation of herbal oils containing 1, 8-cineole, carvacrol or pulegone on growth performance, survival, fatty acid composition, and liver and kidney histology of rainbow trout (Oncorhynchus mykiss) fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 15, 813-819. https://doi.org/10.4194/1303-2712-v15_4_04 [Google Scholar] [Crossref] 
  69. Sutili, F. J., Gatlin, D. M., Heinzmann, B. M., & Baldisserotto, B. (2017). Plant essential oils as fish diet additives: benefits on fish health and stability in feed. Reviews in Aquaculture, 10(3), 716–726. https://doi.org/10.1111/raq.12197 [Google Scholar] [Crossref] 
  70. Syahidah, A., Saad, C., Daud, H., & Abdelhadi, Y. (2015). Status and potential of herbal applications in aquaculture: A review. Iranian Journal of Fisheries Sciences, 14(1), 27-44. https://doi.org/10.22092/IJFS.2018.114421 [Google Scholar] [Crossref] 
  71. Tan, C., Zhou, H., Wang, X., Mai, K., & He, G. (2019). Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal based diet. Fish & Shellfish Immunology, 91, 130-135. ‏ https://doi.org/10.1016/j.fsi.2019.05.030 [Google Scholar] [Crossref] 
  72. Terzi, E., Kucukkosker, B., Bilen, S., Kenanoglu, O. N., Corum, O., Özbek, M., & Parug, S. S. (2021). A novel herbal immunostimulant for rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish & Shellfish Immunology, 110, 55-66. https://doi.org/10.1016/j.fsi.2020.12.019 [Google Scholar] [Crossref] 
  73. Tort, L. (2011). Stress and immune modulation in fish. Developmental & Comparative Immunology, 35(12), 1366-1375. https://doi.org/10.1016/j.dci.2011.07.002 [Google Scholar] [Crossref] 
  74. Villa-Cruz, V., Davila, J., Viana, M., & Vazquez-Duhalt, R. (2009). Effect of broccoli (Brassica oleracea) and its phytochemical sulforaphane in balanced diets on the detoxification enzymes levels of tilapia (Oreochromis niloticus) exposed to a carcinogenic and mutagenic pollutant. Chemosphere, 74(9), 1145-1151. https://doi.org/10.1016/j.chemosphere.2008.11.082 [Google Scholar] [Crossref] 
  75. Xu, Z., Li, X., Yang, H., Liang, G., Gao, B., & Leng, X. (2019). Dietary quercetin improved the growth, antioxidation, and flesh quality of grass carp (Ctenopharyngodon idella). Journal of the World Aquaculture Society, 50(6), 1182-1195.‏ https://doi.org/10.1111/jwas.12663 [Google Scholar] [Crossref] 
  76. Ye, Q., Feng, Y., Wang, Z., Zhou, A., Xie, S., Zhang, Y., Xiang, Q., Song, E., & Zou, J. (2019). Effects of dietary Gelsemium elegans alkaloids on growth performance, immune responses and disease resistance of Megalobrama amblycephala. Fish & Shellfish Immunology, 91, 29-39.‏ https://doi.org/10.1016/j.fsi.2019.05.026 [Google Scholar] [Crossref] 
  77. Yilmaz, E., Ergün, S., & Yilmaz, S. (2015). Influence of carvacrol on the growth performance, hematological, non-specific immune and serum biochemistry parameters in rainbow trout (Oncorhynchus mykiss). Food and Nutrition Sciences, 6(5), 523-531. https://doi.org/10.4236/fns.2015.65054 [Google Scholar] [Crossref] 
  78. Yilmaz, S. (2019). Effects of dietary caffeic acid supplement on antioxidant, immunological and liver gene expression responses, and resistance of Nile tilapia, Oreochromis niloticus to Aeromonas veronii. Fish & Shellfish Immunology, 86, 384-392. https://doi.org/10.1016/j.fsi.2018.11.068 [Google Scholar] [Crossref] 
  79. Yılmaz, S., & Ergün, S. (2018). Trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): I. Effects on haematological, serum biochemical, non-specific immune and head kidney gene expression responses. Fish & Shellfish Immunology, 78, 140-157. https://doi.org/10.1016/j.fsi.2018.04.034 [Google Scholar] [Crossref] 
  80. Yonar, M. E., Yonar, S. M., İspir, Ü., & Ural, M. Ş. (2019). Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Fish & Shellfish Immunology, 89, 83-90.‏ https://doi.org/10.1016/j.fsi.2019.03.038 [Google Scholar] [Crossref] 
  81. Yu, L., Wu, F., Liu, W., Tian, J., Lu, X., & Wen, H. (2017). Semisynthetic ferulic acid derivative: an efficient feed additive for Genetically Improved Farmed Tilapia (Oreochromis niloticus). Aquaculture Research, 48(9), 5017-5028.‏ https://doi.org/10.1111/are.13319 [Google Scholar] [Crossref] 
  82. Zhai, S. W., & Liu, S. L. (2013). Effects of dietary Quercetin on growth performance, serum lipids level and body composition of tilapia (Oreochromis niloticus). Italian Journal of Animal Science, 12(4), e85. https://doi.org/10.4081/ijas.2013.e85 [Google Scholar] [Crossref] 
  83. Zhang, L., Virgous, C., & Si, H. (2019). Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. The Journal of Nutritional Biochemistry, 69, 19-30. https://doi.org/10.1016/j.jnutbio.2019.03.009 [Google Scholar] [Crossref] 
  84. Zheng, Y., Hu, G., Wu, W., Zhao, Z., Meng, S., Fan, L., Song, C., Qiu, L., & Chen, J. (2019). Transcriptome analysis of juvenile genetically improved farmed tilapia (Oreochromis niloticus) livers by dietary resveratrol supplementation. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 1-8. https://doi.org/10.1016/j.cbpc.2019.04.011 ‏ [Google Scholar] [Crossref]